簡易檢索 / 詳目顯示

研究生: 黃忠彬
Huang, Chung-Ping
論文名稱: 12V P型通道橫向擴散金氧半電晶體之熱載子效應
Studies on Hot-Carrier effects in 12V P-LDMOS Transistors
指導教授: 陳志方
Chen, Jr-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 安全操作面積熱載子效應
外文關鍵詞: SOA, hot carrier effects
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是對0.35 微米製程的P 通道橫向擴散金氧半場效電晶體元件(LDMOS)探討因熱載子所造成元件特性退化的現象與機制。並發現元件特性退化會受到量測元件電性參數電壓的嚴重影響,此外,熱載子效應也會導致安全操作面積(SOA)大幅下降的現象。對電路設計而言,此兩現象必須考慮進去。
    經由熱載子實驗量測求得元件可靠度分析結果,發現熱載子造成元件的臨限電壓(VT)嚴重的降低。為了找出其原因,利用了 TCAD 模擬軟體(Technology computer-aided design simulation) 和 ChargePumping 量測技術,結果顯示,在通道區域中由於熱電洞注入所造成的表面狀態(Nit)與捕陷電荷(Not)是造成顯著臨限電壓偏移的因素。
    因實際電路應用上,元件不一定皆工作在操作電壓,亦及可能工作在低於操作電壓的情況。因此在本篇論文中也去改變元件電性參數(Idlin、Idsat、Ron)的量測電壓來探討其因熱載子造成元件退化結果是否一致,實驗結果發現元件在低閘極電壓(Vg)量測電性參數條件下,其退化更為嚴重,元件使用壽命(lifetime)更低。此結果使得傳統評估元件使用壽命的方式不再適用,在本論文中提出了一個正確評估元件使用壽命的方法。
    對電路設計而言,元件的安全操作面積(SOA)是一個相當重要的指標。因此在本論文的最後也去探討熱載子效應對SOA 影響。實驗發現,熱載子效應會導致SOA 大幅下降的現象。為了解釋其原因,使用了 TCAD 模擬、量測Ibs/Ids (substrate current/drain current)的方法以及最大橫向電場模型。

    In this thesis, the experiment studies on the phenomena and mechanisms of hot-carrier-induced degradation in 0.35 μm p-type lateral double diffusion metal oxide semiconductor field-effect-transistors. The experiments found that measure voltage of device electrical parameters deeply affects the amount of hot-carrier-induced degradation. Besides, the hot carrier effects also causes the safe operating area (SOA) to decrease largely. This phenomenon must be considered for circuit designs.
    After hot carrier stress experiment on the device, the threshold voltage (VT) decreases seriously. To find reason, TCAD simulation and Charging Pumping method are used. Experimental results indicate that donor-type interface traps created by hole injection in the channel region is the dominant factor for significant VT shift.
    The devices not always work on operational voltage for actual circuits applications. In order words, the devices maybe work on the IV lower voltage compared with operational voltage. For this reason, the hot-carrier-induced degradation extracting at different voltage are investigated. Experimental results indicate that degradation extracting at low gate voltage is more serious. This phenomenon causes the traditional device lifetime is not correct. In this thesis, a correct method estimating device lifetime is presented.
    The safe operating area (SOA) is an important index for circuit designs, hence the effect of hot carrier stress on SOA is investigated at last in the thesis. We find that hot carrier cause SOA to decrease largely. In order to explain this phenomenon, TCAD simulation, the method which measuring substrate and drain current and the model for the maximum lateral electric field (Eymax) are used.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgements V Contents VI Table Captions VIII Figure Captions IX Chapter 1 Introduction 1 1.1 Introduction of high voltage MOSFET 1 1.2 Motivation 2 1.3 Organization of this thesis 2 Chapter 2 Background Review and Measurement Characteristics 5 2.1 Introduction of Hot-Carrier Effect 5 2.2 Safe Operating Area 6 2.3 Charge Pumping Measurement 6 2.4 Measure methodology 9 2.5 Hot carrier experiment setup 10 Chapter 3 Mechanism of Threshold Voltage Shift 24 3.1 Introduction 24 3.2 Experiments 25 3.3 Results and Discussion 25 3.4 Summary 29 Chapter 4 Impact of measurement voltage on hot-carrier-induced degradation 39 4.1 Introduction 39 4.2 Experiments 40 4.3 Results and Discussion 40 4.5 Summary 44 Chapter 5 Effect of hot carrier stress on SOA 53 5.1 Introduction 53 5.2 Experiments 54 5.3 Results and Discussion 55 VII 5.4 Summary 58 Chapter 6 Conclusion and Future Work 67 6.1 Conclusion 67 6.2 Future Work 68 References 69

    [1] V. Parthasarathy, R. Zhu, W. Peterson, M. Zunino, and R. Baird, “A
    33 V, 0.25 mΩ*cm2 n-channel LDMOS in a 0.65 μm smart-power
    technology for 20-30 V operation,” in Proc. Int. Symp. Power
    Semiconductor Devices and ICs, pp. 61-64, (1998).
    [2] A. Moscatelli, A. Merlini, G. Croce, P. Galbiati, and C. Contiero,
    “LDMOS implementation in 0.35μm BCD technology (BCD6),” in
    Proceedings of IEEE int. Symposium Power Semiconductor Device
    and ICs, pp. 323-326, (2000).
    [3] P. L. Hower and S. Pendharkar, “Short and long-term safe operating
    area considerations in LDMOS transistors,” in Proc. Int. Reli. Phys.
    Symp, pp. 545-550, (2005).
    [4] D. G. Lin, S. L. Tu, Y. C. See, and P. Tam, “A Novel LDMOS
    Structure With A Step Gate Oxide,” in IEDM Tech. Dig., pp. 936-966,
    (1995).
    [5] J. Apels, H. Vaes and J. Verhoeven, “High voltage thin later devices
    (RESURF DEVICES),” in IEDM Tech. Dig., pp. 238-241, (1979).
    [6] P. Moens, G. V. den bosch, C. De Keukeleire, R. Degraeve, M. Tack,
    and G. Groeseneken, “Hot Hole Degradation Effects in Lateral
    nDMOS Transistors,” IEEE Trans. Electron Devices, vol. 51, no. 10,
    pp. 1704-1710, (2004).
    [7] J. F. Chen, K. S. Tian, S. Y. Chen, K. M. Wu, J. R. Shih, and K. Wu,
    “An Investigation on Anomalous Hot-Carrier-Induced On-Resistance
    Reduction in n-Type LDMOS Transistors,” IEEE Trans. Device
    Mater. Reliab., vol. 9, no. 3, pp. 459-464, (2009).
    70
    [8] J. F. Chen, K. S. Tian, S. Y. Chen, K. M. Wu, and C. M. Liu,
    “On-Resistance Degradation Induced by Hot-Carrier Injection in
    LDMOS Transistors With STI in the Drift Region,” IEEE Electron
    Device Lett., vol. 29, no. 9, pp. 1071-1073, (2008).
    [9] D. Corso, S. Aurite, E. Sciacca, D. Naso, S. Lombardo, A. Santangelo,
    M. C. Nicotra, and S. Cascino, “Measure of the hot carrier damage
    profile in LDMOS devices stressed at high drain voltage,”
    Microelectron. Reliab., vol. 47, pp. 806-809, (2007).
    [10] S. H. Chen, J. Gong, M. C. Wu, and A. Y. K. Su, “Hot-Carrier
    Degradation Rate of High-Voltage Lateral Diffused
    Metal-Oxide-Semiconductor Field-Effect Transistors under
    Maximum Substrate Current Stress Condition,” Jpn. J. Appl. Phys.,
    vol. 43, no. 1, pp. 54-60, (2004).
    [11] D. Brisbin, P. Lindorfer, and P. Chaparala, “Anomalous Safe
    Operating Area and Hot Carrier Degradation of NLDMOS Devices,”
    IEEE Trans. Device Mater. Reliab., vol. 6, no. 3, pp. 364-370, (2006).
    [12] P. Moens, and G. V. den bosch, “Characterization of Total Safe
    Operating Area of Lateral DMOS Transistors,” IEEE Trans. Device
    Mater. Reliab., vol. 6, no. 3, pp. 349-357, (2006).
    [13] L. Labate, S. Manzini, and R. Roggero, “Hot-hole-induced dielectric
    breakdown in LDMOS transistors,” IEEE Trans. Electron Devices,
    vol. 50, no. 2, pp. 372-377, (2003).
    [14] Z. Sun, W. Sun, and L. Shi, “A review of safe operation area,”
    Microelectron. Journal, vol. 37, no. 7, pp. 661-667, (2006).
    [15] A. G. Sabnis, “VLSI reliability,” in VLSI Electronic Microstructure
    Science, vol. 22, Academic Press, New York, Chapter 6, (1990).
    71
    [16] P. Moens, and G. V. den bosch, “Reliability assessment of integrated
    power transistors: Lateral DMOS versus vertical DMOS,”
    Microelectron. Reliab., vol. 48, no. 8-9, pp. 1300-1305, (2008).
    [17] D. Brisbin, P. Lindorfer, and P. Chaparala, “Anomalous Safe
    Operating Area and Hot Carrier Degradation of NLDMOS Devices,”
    IEEE Trans. Device Mater. Reliab., vol. 6, no. 3, pp. 364-370, (2006).
    [18] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker,
    “A Reliable Approach to Charge Pumping Measurements in
    MOS-Transistors, ” IEEE Trans. Electron Device, vol. 31, no. 1, pp.
    42-53, (1984).
    [19] T. Aichinger, and M. Nelhiebel, “Advanced Energetic and Lateral
    Sensitive Charge Pumping Profiling Methods for MOSFET Device
    Characterization-Analytical Discussion and Case studies,” IEEE
    Trans. Device Mater. Reliab., vol. 8, no. 3, pp. 509-518, (2008).
    [20] J. J. Liou, A. Ortiz-Conde, and F. Garcia Sanchez, “Extraction of the
    threshold voltage of MOSFETs: an Overview,” IEEE IEDM, pp.
    31-38, (1997).
    [21] J. F. Chen, S. Y. Chen, K. M. Wu, and C. M. Liu,“Investigation of
    hot-carrier-induced degradation mechanisms in p-type high-voltage
    drain extend metal-oxide-semiconductor transistors,” Jpn. J. Appl.
    Phys., vol. 48, no. 4, special issue: part 2 SP. Iss. SI, Article number
    04C039, Part: part2 Sp. Iss. SI, (2009).
    [22] T. Y. Chan, C. I. Chiang, and H. Gaw, “New Insight into
    Hot-Electron-Induced Degradation of n-MOSFET,” Tech. Dig. IEDM,
    p.196, (1988).
    [23] S. Manzini and C. Contiero, “Hot-electron-induced degradation in
    72
    high-voltage submicron DMOS transistors,” in Proc. Int. Symp.
    Power Semiconductor Devices and ICs, pp. 65-68, (1996).
    [24] S. H. Chen, J. Gong, M. C. Wu, T. Y. Huang, J. F. Huang, R. H. Liou,
    S. L. Hsu, L. L. Lee and H. C. Lee, “Time-Dependent Drain- and
    Source-Series Resistance of High-Voltage Lateral Diffused
    Metal-Oxide-Semiconductor Field-Effect Transistors during
    Hot-Carrier Stress,” Jpn. J. Appl. Phys., vol. 42, no. 2, pp. 409-413,
    (2003).
    [25] P. Moens, and G. V. den bosch, “Reliability assessment of integrated
    power transistors: Lateral DMOS versus vertical DMOS,”
    Microelectron. Reliab., vol. 48, no. 8-9, pp. 1300-1305, (2008).
    [26] D. Brisbin, P. Lindorfer, and P. Chaparala, “Anomalous Safe
    Operating Area and Hot Carrier Degradation of NLDMOS Devices,”
    IEEE Trans. Device Mater. Reliab., vol. 6, no. 3, pp. 364-370, (2006).

    無法下載圖示 校內:2013-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE