簡易檢索 / 詳目顯示

研究生: 劉哲宇
Liu, Che-Yu
論文名稱: 由兩相對電漿噴流對撞產生之滯留電漿密度量測
Density measurement of the stagnated plasma from the collision of two counter propagating plasma jets
指導教授: 張博宇
Chang, Po-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 82
中文關鍵詞: 錐形導線陣列電漿噴流正向碰撞軸向壓縮脈衝功率系統
外文關鍵詞: Conical-wire array, Plasma jet, Head-on collision, Z-pinch, Pulsed-power system
相關次數: 點閱:63下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們研究透過兩正向碰撞的電漿噴流產生的滯留電漿,可以用來模擬銀河系及恆星形成區等大尺度且難以研究的天文物理現象。實驗是使用 1-kJ 的高壓脈衝功率系統,並透過雷射及可見光相機系統進行量測。系統放電時可產生一個峰值約為 123.5 kA 的脈衝電流,且上升時間約為 1592 ns,用於驅動一對彼此相對的錐形導線陣列所組成的雙錐形導線陣列。為了使雷射不會受系統放電所產生的電磁脈衝訊號影響,我們設計了一個八級的高壓脈衝產生器來改善我們用於觸發系統放電的多級高壓觸發系統,改善後的觸發系統的延遲時間為 230±90 ns。最後我們透過分析雷射相機系統所拍攝的影像,得到各時間點上方電漿噴流的長度後,將其長度對應時間做線性擬合,並將線性擬合的斜率定義為平均速度,得到的速值約為 17.2±4 km/s。除此之外,我們透過干涉儀所拍攝的影像,得到因雷射穿過電漿而產生的相位變化圖片,求得各時間點電漿噴流的寬度變化,發現在628.8 ns時上下兩電漿噴流的寬度都減少。透過相位變化的圖片,我們可以得到電漿密度,再將其從上到下分成七個區域觀察電漿密度的變化,發現在約 600 ns後,電漿會開始推積在雙錐形線陣列的中間並形成密度約在 10^{22} 每立方公尺的滯留電漿,因此根據密度的變化以及寬度的變化,意味著電漿噴流會受到軸向壓縮的效應影響,累積在正中心。

    In this thesis, we study the stagnated plasma produced by two colliding plasma jets, which can be used to simulate large-scale and difficult-to-study astrophysical phenomena such as the Milky Way and star-forming regions. The experiment was performed using a 1-kJ high-voltage pulsed-power system and measured through a laser and visible light camera system. When the system discharges, it generates a pulse current with a peak value of approximately 123.5 kA and a rise time of approximately 1592 ns, which is used to drive a bi-conical-wire array consisting of a pair of conical-wire arrays facing each other. In order to prevent the laser from being affected by the electromagnetic pulse signal generated by system discharge, we designed an eight-stage high-voltage pulse generator to improve our multi-stage high-voltage trigger system. The delay of the system with the improved triggering system is 230±90 ns. Finally, by analyzing the images captured by the laser camera system, we obtained the length of the plasma jet at different times. Then, we made a linear fitting to the length corresponding to different times. And we defined the slope of the linear fitting as the averaged jet speed. The averaged speed is about 17.2±4 km/s. Through the images taken by the interferometer, we can obtain the time dependent density and the width of the plasma jets. We found that the widths of the top and down plasma jets both decreased after 628.8 ns. In addition, we divide the bi-conical-wire array in seven regions from top to bottom to observe the change of the plasma density. We found that after about 600 ns, the plasma started to pile up in the middle plane of the bi-conical-wire array and formed a stagnanted plasma with a density of about 10^{22} per m^{3}. It suggests that the stagnated plasma not only came from the plasma jets but also from the ablated plasma from the tungsten wires of the bi-conical-wire array.

    摘要 i Abstract ii 致謝 iii Contents iv List of figures vi List of tables x 1 Introduction 1 1.1 Astronomical phenomenon 1 1.2 Laboratory-astrophysical experiments 2 1.3 Ways of generating high-energy-density plasma 3 1.4 The bi-conical-wire array 3 1.5 The goal of the thesis 5 2 The pulsed-power system 6 2.1 The 1-kJ pulsed-power system 6 2.2 The multistep high-voltage trigger system 7 2.3 Marx generator 8 2.4 Eight-stage high-voltage pulse generator 9 2.4.1 Determining the required output voltage for the eight-stage high-voltage pulse generator 9 2.4.2 The design of eight-stage high-voltage pulse generator 12 2.4.3 The low-pass filter of the eight-stage high-voltage pulse generator 15 2.5 Timeline of the pulsed-power system 18 2.6 Diagnostics 21 2.6.1 Camera system 21 2.6.2 Analysis of the interferometer images 24 2.6.3 Filling fringers 27 3 The stagnated plasma 29 3.1 The bi-conical-wire array 29 3.2 Data analysis 34 3.2.1 Spatial conversion ratio 34 3.2.2 Timings of the laser probing 36 3.2.3 The length of the plasma jet 37 3.2.4 The width of the plasma jet 39 3.2.5 The density analysis 40 3.3 Summary 49 4 Future work 50 5 Summary 51 References 52 Appendix 54 A.1 The location diagram of the eight-stage high-voltage pulse generator circuit board placement 54 A.2 The layout of the eight-stage high-voltage pulse generator 55 A.3 The layout of the filter of the eight-stage high-voltage pulse generator 57 A.4 The high-voltage power supply control board layout 57 A.5 The layout of the 12-V power supply 58 A.6 The bus bar layout 58 A.7 Engineering drawing of the bi-conical-wire array 58 A.8 The analyze data 62 A.9 The procedure of set up the non-rotating bi-conical-wire array 73 A.10 The store of the data 82 A.11 The vender of all components 82

    [1] F. Macchetto J. A. Biretta, W. B. Sparks. Hubble space telescope observations of superluminal motion in the m87 jet. The astorophysical, 1999.
    [2] Shinji Koide, Kazunari Shibata, Takahiro Kudoh, and David L. Meier. Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets. Science, 295(5560):1688 1691, mar 2002.
    [3] A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J.P. Jadaud, J.P. LeBreton, C. Reverdin, B. Rosse, R. Rosch, N. Blanchot, B. Villette, R. Wrobel, and J.L. Miquel. LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics. High Energy Density Physics, 17:2 11, dec 2015.
    [4] National technology and engineering solutions of sandia. https://www.sandia.gov/news/image-gallery/, 2023.
    [5] D. J. Ampleford, S. V. Lebedev, S. N. Bland, S. C. Bott, J. P. Chittenden, C. A. Jennings, V. L. Kantsyrev, A. S. Safronova, V. V. Ivanov, D. A. Fedin, P. J. Laca, M. F. Yilmaz, V. Nalajala, I. Shrestha, K. Williamson, G. Osborne, A. Haboub, and A. Ciardi. Dynamics of conical wire array z-pinch implosions. Physics of Plasmas, 14(10):102704, oct 2007.
    [6] Po-Yu Chang, Yen-Cheng Lin, Ming-Hsiang Kuo, Cheng-Han Du, Chih-Jui Hsieh, MeiFeng Huang, Ming-Cheng Jheng, Jia-Kai Liu, Sheng-Hua Yang, I-Lin Yeh, and Frank J. Wessel. One-kilojoule pulsed-power generator for laboratory space sciences. Review of Scienti c Instruments, 93(4):043505, apr 2022.
    [7] Po-Yu Chang, Chih-Jui Hsieh, Mei-Feng Huang, Ming-Cheng Jheng, Yen-Cheng Lin, JiaKai Liu, and Sheng-Hua Yang. Rail-gap switch with a multistep high-voltage triggering system. Review of Scientific Instruments, 91(11):114703, nov 2020.
    [8] Po-Yu Chang. Nstc report, project most-111-2112-m-006-013.
    [9] M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger. Digital evaluation of interferograms. Measurement, 36(1):53-66, jul 2004.
    [10] Chang Po-Yu. Application of plasma phenomena (la50800).
    [11] Y. C. Francis Thio, Scott C. Hsu, F. Douglas Witherspoon, Edward Cruz, Andrew Case, Samuel Langendorf, Kevin Yates, John Dunn, Jason Cassibry, Roman Samulyak, Peter Stoltz, Samuel J. Brockington, Ajoke Williams, Marco Luna, Robert Becker, and Adam Cook. Plasma-jet-driven magneto-inertial fusion. Fusion Science and Technology, 75(7):581-598, may 2019.
    [12] I-Lin Yeh. Theoretical study of the solar wind interacting with an unmagnetized planet in space and in laboratory. Master thesis.
    [13] Ming-Hsiang Kuo. Study of the plasma disk generated from the head-on collision of two plasma jet. Master thesis, 2022.
    [14] D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey. Similarity criteria for the laboratory simulation of supernova hydrodynamics. The Astrophysical Journal, 518(2):821 832, jun 1999.
    [15] R. J. Baker and B. P. Johnson. Stacking power MOSFETs for use in high speed instrumentation. Review of Scientific Instruments, 63(12):5799-5801, dec 1992.
    [16] Lin Yen-Cheng. Studies of rotational plasma jets produced by twisted-conical-wire arrays. master thesis.
    [17] J.C. Valenzuela, G.W. Collins, T. Zick, J. Narkis, I. Krasheninnikov, and F.N. Beg. Counter-propagating plasma jet collision and shock formation on a compact current driver. High Energy Density Physics, 17:140-145, dec 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE