| 研究生: |
陳日璟 Chen, Jih-Ching |
|---|---|
| 論文名稱: |
腿後肌群與豎脊肌的肌肉特性對於非特異性下背痛族群疼痛、失能及腰椎動作的關聯性 The correlation of hamstring and erector spinae muscle properties between pain, disability, and lumbar movement in individuals with non-specific low back pain |
| 指導教授: |
林呈鳳
Lin, Cheng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 非特異性下背痛 、腿後肌群 、豎脊肌 、柔軟度 、剛性 |
| 外文關鍵詞: | Non-specific low back pain, Hamstring, Erector spinae, Flexibility, Stiffness |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:非特異性下背痛是由多重因素所造成,在非特異性下背痛的患者身上,相較於健康人,腿後肌群及豎脊肌的柔軟度較低而剛性較高,而在此狀況下,腰椎的關節活動度會有失能問題產生,進而增加腰椎之力矩,最終引發下背痛。過去的研究主要探討健康人及非特異性下背痛患者之間柔軟度及剛性的差異,然而無法了解是否會因為降低肌肉柔軟度及增加肌肉剛性而伴隨非特異性下背痛的症狀惡化,因此本研究目的為探討非特異性下背痛之腿後肌群及豎脊肌的柔軟度與剛性和疼痛、失能及腰椎活動度之間的關聯性。
方法:本研究納入59位非特異性下背痛的受試者,針對疼痛及失能程度,會分別利用視覺疼痛量表(Visual Analog Scale)及歐式下背痛量表(Oswestry Disability Index)評估;腿後肌群的柔軟度會利用被動直膝抬腿(passive straight leg raise test)、坐姿提前彎(sit and reach test)及站姿體前彎(finger to floor test)測試;腰椎活動度包含屈曲(flexion)、伸展(extension)、矢狀面動作範圍(ROM range in sagittal plane)及額狀面動作範圍(ROM range in frontal plane); 肌肉剛性會利用肌張力測量儀(Myoton Pro)針對股二頭肌及半腱肌的肌肉中點、近端肌肉肌腱交接處及遠端肌肉肌腱交接處測試,而豎脊肌將在第一至第五腰椎脊突旁2公分測試。受試者將會依照視覺疼痛量表小於3分及介在3-6分之間,依序分為輕度疼痛組及中度疼痛組。雙尾皮爾森相關將會用來檢定在疼痛、失能、腿後肌群及豎脊肌柔軟度與剛性之間的關聯性。雙尾獨立t檢定用來評估輕度疼痛組及中度疼痛組的失能、腰椎關節活動度、腿後肌及豎脊肌柔軟度與剛性之間的差異性。
結果:疼痛與被動直膝抬腿(r = -0.270, p = 0.038)及腰椎額狀面動作範圍(r = -0.381, p = 0.003)有顯著的負相關,全部的腿後肌群柔軟度測試與腰椎額狀面動作範圍皆有顯著的關聯性,但與腰椎矢狀面動作皆無顯著的關聯性。然而豎脊肌的剛性與腰椎屈曲(r = -0.326, p = 0.012)及矢狀面動作範圍(r = -0.356, p = 0.006)有顯著的負相關。輕度疼痛組相較於中度疼痛組有較高的失能程度(p = 0.010 95% CI: -3.48, -0.49);較低的被動直膝抬腿角度(p = 0.025 95% CI: 1.24, 18.18)、腰椎伸直(p =0.030 95% CI: 0.03, 0.38)以及腰椎額狀面動作範圍(p = 0.020 95% CI: 0.91, 10.71)。然而兩組之間的大腿後肌(p = 0.520 95% CI: -15.27, 29.99)及豎脊肌(p = 0.795 95% CI: -46.81, -36.04)剛性皆無顯著差異。
結論:本篇研究提供需要處理非特異性下背痛的臨床人員了解腿後肌群和豎脊肌的柔軟度降低及剛性增加可能是潛在造成下背痛症狀惡化的因子之一,因此,非特異性下背痛的復健處方或是運動訓練需要考量此兩條肌肉的特性做設計。
Background: Non-specific low back pain (NSLBP) is a multi-factor issue. Lower flexibility and higher stiffness of hamstring and erector spinae muscles have been found in NSLBP compared to healthy people. With decreasing flexibility and increasing stiffness of hamstring and erector spinae, lumbar movement may be prone to dysfunction, thus, increasing torque on lumbar and eventually cause low back pain. Previous studies investigated the difference of muscle flexibility and stiffness between NSLBP and healthy people. However, the studies cannot know whether muscle flexibility and stiffness are one of factors increase NSLBP level. Thus, the study investigated the correlation of hamstring and erector spinae mechanical properties between pain, disability level and lumbar flexibility.
Method: Fifty-nine subjects with NSLBP were recruited in the study. For pain and disability level, visual analog scale (VAS) and Oswestry disability index (ODI) were used to evaluate respectively. Hamstring flexibility was evaluated by passive straight leg raise test (PSLR), sit and reach test (SRT) and finger to floor test (FFT). Lumbar flexion, extension, ROM range in sagittal plane and ROM range in frontal plane were evaluated for lumbar flexibility. Myoton Pro (Myoton AS, Estonia and Myoton Ltd London) was used to evaluate hamstring and erector spinae stiffness. For hamstring stiffness, location of muscle belly, proximal and distal muscle-tendon junction of semitendinosus and biceps femoris were evaluated. Bilaterally 2cm away from L1-L5 spinous processes muscle stiffness were measured for erector spinae stiffness. The participants were divided into mild pain group and moderate pain group by VAS below 3 and between 3-6, respectively. Two-tailed Pearson’s correlation coefficient test was used to test correlation between VAS, ODI, flexibility and stiffness of hamstring and erector spinae. Two tailed independent-t test were used to analyze the difference, including ODI, hamstring flexibility, hamstring stiffness, erector spinae stiffness and lumbar flexibility, between mild pain group and moderate pain.
Results: Increasing pain intensity showed decreasing PSLR (r = -0.270, p = 0.038) and lumbar frontal plane ROM range (r = -0.381, p = 0.003). All of hamstring flexibility had moderate correlation with lumbar frontal plane movement; however, no significant correlation between hamstring flexibility and lumbar sagittal plane movement was found. Hamstring stiffness was found no significant correlation between hamstring flexibility, nevertheless, erector spinae stiffness was found had significant correlation between lumbar flexion (r = -0.326, p = 0.012) and sagittal plane ROM range (r = -0.356, p = 0.006). In comparison with mild pain group, moderate pain group had higher disability level (p = 0.010 95% CI: -3.48, -0.49); and had lower PSLR (p = 0.025 95% CI: 1.24, 18.18), lumbar extension (p =0.030 95% CI: 0.03, 0.38) and lumbar ROM range in frontal plane (p = 0.020 95% CI: 0.91, 10.71). However, there were not have significant difference between mild pain group and moderate pain group, including hamstring (p = 0.520 95% CI: -15.27, 29.99) and erector spinae stiffness (p = 0.795 95% CI: -46.81, -36.04).
Conclusion: This study provided clinical physical therapists or those who need to deal with non-specific low back pain that the increased stiffness and decreased flexibility of hamstring and erector spinae may be the potential risk factors to aggravate low back pain level. Increasing hamstring flexibility and decreasing erector spinae stiffness should be considered in physical evaluation and rehabilitation programs for those who suffer from non-specific LBP.
1. Agyapong-Badu, S., Aird, L., Bailey, L., Mooney, K., Mullix, J., Warner, M., . . . Stokes, M. (2013). Interrater reliability of muscle tone, stiffness and elasticity measurements of rectus femoris and biceps brachii in healthy young and older males. Work. Papers Health Sci, 4, 1-11.
2. Akoglu, H. (2018). User's guide to correlation coefficients. Turkish journal of emergency medicine, 18(3), 91-93. doi:10.1016/j.tjem.2018.08.001
3. Alfuraih, A. M., Tan, A. L., O’Connor, P., Emery, P., & Wakefield, R. J. (2019). The effect of ageing on shear wave elastography muscle stiffness in adults. Aging Clinical and Experimental Research, 31(12), 1755-1763. doi:10.1007/s40520-019-01139-0
4. Alschuler, K. N., Neblett, R., Wiggert, E., Haig, A. J., & Geisser, M. E. (2009). Flexion-relaxation and clinical features associated with chronic low back pain: A comparison of different methods of quantifying flexion-relaxation. Clinical Journal of Pain, 25(9), 760-766. doi:10.1097/AJP.0b013e3181b56db6
5. Anderson, B., Lygren, H., Magnussen, L. H., Eide, G. E., & Strand, L. I. (2013). What functional aspects explain patients' impression of change after rehabilitation for long-lasting low back pain? Physiotherapy Research International, 18(3), 167-177. doi:10.1002/pri.1548
6. Arshad, R., Zander, T., Dreischarf, M., & Schmidt, H. (2016). Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination. Med Eng Phys, 38(4), 333-338. doi:10.1016/j.medengphy.2016.01.013
7. Astfalck, R. G., O'Sullivan, P. B., Straker, L. M., Smith, A. J., Burnett, A., Caneiro, J. P., & Dankaerts, W. (2010). Sitting postures and trunk muscle activity in adolescents with and without nonspecific chronic low back pain: an analysis based on subclassification. Spine, 35(14), 1387-1395. doi:10.1097/BRS.0b013e3181bd3ea6
8. Battié, M. C., Bigos, S. J., Fisher, L. D., Spengler, D. M., Hansson, T. H., Nachemson, A. L., & Wortley, M. D. (1990). The role of spinal flexibility in back pain complaints within industry. A prospective study. Spine, 15(8), 768-773.
9. Biering-Sørensen, F. (1984). Physical measurements as risk indicators for low-back trouble over a one-year period. Spine, 9(2), 106-119. doi:10.1097/00007632-198403000-00002
10. Blackburn, J. T., Riemann, B. L., Padua, D. A., & Guskiewicz, K. M. (2004). Sex comparison of extensibility, passive, and active stiffness of the knee flexors. Clinical Biomechanics, 19(1), 36-43. doi:https://doi.org/10.1016/j.clinbiomech.2003.09.003
11. Bohannon, R. W. (1982). Cinematographic analysis of the passive straight-leg-raising test for hamstring muscle length. Physical Therapy, 62(9), 1269-1274. doi:10.1093/ptj/62.9.1269
12. Borman, N. P., Trudelle-Jackson, E., & Smith, S. S. (2011). Effect of stretch positions on hamstring muscle length, lumbar flexion range of motion, and lumbar curvature in healthy adults. Physiotherapy Theory and Practice, 27(2), 146-154. doi:10.3109/09593981003703030
13. Burton, A. K., Tillotson, K. M., & Troup, J. D. (1989). Variation in lumbar sagittal mobility with low-back trouble. Spine, 14(6), 584-590. doi:10.1097/00007632-198906000-00007
14. Callaghan, J. P., Gunning, J. L., & McGill, S. M. (1998). The Relationship Between Lumbar Spine Load and Muscle Activity During Extensor Exercises. Physical Therapy, 78(1), 8-18. doi:10.1093/ptj/78.1.8
15. Carey, T. S., Garrett, J. M., & Jackman, A. M. (2000). Beyond the Good Prognosis: Examination of an Inception Cohort of Patients With Chronic Low Back Pain. Spine, 25(1). Retrieved from https://journals.lww.com/spinejournal/Fulltext/2000/01010/Beyond_the_Good_Prognosis__Examination_of_an.19.aspx
16. Cecchi, F., Debolini, P., Lova, R. M., Macchi, C., Bandinelli, S., Bartali, B., . . . Ferrucci, L. (2006). Epidemiology of back pain in a representative cohort of Italian persons 65 years of age and older: the InCHIANTI study. Spine, 31(10), 1149-1155. doi:10.1097/01.brs.0000216606.24142.e1
17. Chan, S. T., Fung, P. K., Ng, N. Y., Ngan, T. L., Chong, M. Y., Tang, C. N., . . . Zheng, Y. P. (2012). Dynamic changes of elasticity, cross-sectional area, and fat infiltration of multifidus at different postures in men with chronic low back pain. Spine J, 12(5), 381-388. doi:10.1016/j.spinee.2011.12.004
18. Congdon, R., Bohannon, R., & Tiberio, D. (2005). Intrinsic and imposed hamstring length influence posterior pelvic rotation during hip flexion. Clinical Biomechanics, 20(9), 947-951. doi:https://doi.org/10.1016/j.clinbiomech.2005.03.011
19. Creze, M., Bedretdinova, D., Soubeyrand, M., Rocher, L., Gennisson, J. L., Gagey, O., . . . Bellin, M. F. (2019). Posture-related stiffness mapping of paraspinal muscles. Journal of Anatomy, 234(6), 787-799. doi:10.1111/joa.12978
20. de Souza, I. M. B., Sakaguchi, T. F., Yuan, S. L. K., Matsutani, L. A., do Espírito-Santo, A. d. S., Pereira, C. A. d. B., & Marques, A. P. (2019). Prevalence of low back pain in the elderly population: a systematic review. Clinics (Sao Paulo, Brazil), 74, e789-e789. doi:10.6061/clinics/2019/e789
21. Deyo, R. A., & Weinstein, J. N. (2001). Low back pain. New England Journal of Medicine, 344(5), 363-370. doi:10.1056/nejm200102013440508
22. Dionne, C. E., Dunn, K. M., & Croft, P. R. (2006). Does back pain prevalence really decrease with increasing age? A systematic review. Age and Ageing, 35(3), 229-234. doi:10.1093/ageing/afj055
23. Dionne, C. E., Dunn, K. M., Croft, P. R., Nachemson, A. L., Buchbinder, R., Walker, B. F., . . . Von Korff, M. (2008). A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine, 33(1), 95-103. doi:10.1097/BRS.0b013e31815e7f94
24. Donelson, R., & McKenzie, R. (1992). Effects of spinal flexion and extension exercises on low-back pain and spinal mobility in chronic mechanical low-back pain patients. Spine, 17(10), 1267-1268.
25. Donisch, E. W., & Basmajian, J. V. (1972). Electromyography of deep back muscles in man. American Journal of Anatomy, 133(1), 25-36. doi:10.1002/aja.1001330103
26. Eby, S. F., Cloud, B. A., Brandenburg, J. E., Giambini, H., Song, P., Chen, S., . . . An, K.-N. (2015). Shear wave elastography of passive skeletal muscle stiffness: Influences of sex and age throughout adulthood. Clinical Biomechanics, 30(1), 22-27. doi:https://doi.org/10.1016/j.clinbiomech.2014.11.011
27. Esola, M. A., McClure, P. W., Fitzgerald, G. K., & Siegler, S. (1996). Analysis of Lumbar Spine and Hip Motion During Forward Bending in Subjects With and Without a History of Low Back Pain. Spine, 21(1), 71-78. Retrieved from https://journals.lww.com/spinejournal/Fulltext/1996/01010/Analysis_of_Lumbar_Spine_and_Hip_Motion_During.17.aspx
28. Fasuyi, F. O., Fabunmi, A. A., & Adegoke, B. O. A. (2017). Hamstring muscle length and pelvic tilt range among individuals with and without low back pain. Journal of Bodywork and Movement Therapies, 21(2), 246-250. doi:10.1016/j.jbmt.2016.06.002
29. Fathallah, F. A., Marras, W. S., & Parnianpour, M. (1998). The role of complex, simultaneous trunk motions in the risk of occupation-related low back disorders. Spine, 23(9), 1035-1042. doi:10.1097/00007632-199805010-00014
30. Gajdosik, R. L., Albert, C. R., & Mitman, J. J. (1994). Influence of Hamstring Length on the Standing Position and Flexion Range of Motion of the Pelvic Angle, Lumbar Angle, and Thoracic Angle. Journal of Orthopaedic and Sports Physical Therapy, 20(4), 213-219. doi:10.2519/jospt.1994.20.4.213
31. Gajdosik, R. L., Hatcher, C. K., & Whitsell, S. (1992). Influence of short hamstring muscles on the pelvis and lumbar spine in standing and during the toe-touch test. Clinical Biomechanics (Bristol, Avon), 7(1), 38-42. doi:10.1016/0268-0033(92)90006-p
32. Garrett, W. E. (1990). Muscle strain injuries: clinical and basic aspects. Medicine and Science in Sports and Exercise, 22 4, 436-443.
33. Geisser, M. E., Haig, A. J., Wallbom, A. S., & Wiggert, E. A. (2004). Pain-related fear, lumbar flexion, and dynamic EMG among persons with chronic musculoskeletal low back pain. Clinical Journal of Pain, 20(2), 61-69. doi:10.1097/00002508-200403000-00001
34. Göeken, L. N., & Hof, A. L. (1994). Instrumental straight-leg raising: Results in patients. Archives of Physical Medicine and Rehabilitation, 75(4), 470-477. doi:https://doi.org/10.1016/0003-9993(94)90174-0
35. Halbertsma, J. P., Göeken, L. N., Hof, A. L., Groothoff, J. W., & Eisma, W. H. (2001). Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain. Archives of Physical Medicine and Rehabilitation, 82(2), 232-238.
36. Hancock, M. J., Maher, C. G., Latimer, J., Spindler, M. F., McAuley, J. H., Laslett, M., & Bogduk, N. (2007). Systematic review of tests to identify the disc, SIJ or facet joint as the source of low back pain. European Spine Journal, 16(10), 1539-1550. doi:10.1007/s00586-007-0391-1
37. Hartman, J. G., & Looney, M. (2003). Norm-Referenced and Criterion-Referenced Reliability and Validity of the Back-Saver Sit-and-Reach. Measurement in Physical Education and Exercise Science, 7(2), 71-87. doi:10.1207/S15327841MPEE0702_2
38. Hartvigsen, J., Hancock, M. J., Kongsted, A., Louw, Q., Ferreira, M. L., Genevay, S., . . . Underwood, M. (2018). What low back pain is and why we need to pay attention. Lancet, 391(10137), 2356-2367. doi:10.1016/s0140-6736(18)30480-x
39. Hasebe, K., Okubo, Y., Kaneoka, K., Takada, K., Suzuki, D., & Sairyo, K. (2016). The effect of dynamic stretching on hamstrings flexibility with respect to the spino-pelvic rhythm. The Journal of Medical Investigation, 63(1.2), 85-90. doi:10.2152/jmi.63.85
40. Hasebe, K., Sairyo, K., Hada, Y., Dezawa, A., Okubo, Y., Kaneoka, K., & Nakamura, Y. (2014). Spino-pelvic-rhythm with forward trunk bending in normal subjects without low back pain. European Journal of Orthopaedic Surgery & Traumatology, 24(1), 193-199.
41. Hashemirad, F., Talebian, S., Hatef, B., & Kahlaee, A. H. (2009). The relationship between flexibility and EMG activity pattern of the erector spinae muscles during trunk flexion–extension. Journal of Electromyography and Kinesiology, 19(5), 746-753. doi:https://doi.org/10.1016/j.jelekin.2008.02.004
42. Herrington, L. (2013). The effect of pelvic position on popliteal angle achieved during 90:90 hamstring-length test. J Sport Rehabil, 22(4), 254-256. doi:10.1123/jsr.22.4.254
43. Hodges, P., van den Hoorn, W., Dawson, A., & Cholewicki, J. (2009). Changes in the mechanical properties of the trunk in low back pain may be associated with recurrence. Journal of Biomechanics, 42(1), 61-66. doi:10.1016/j.jbiomech.2008.10.001
44. Hodges, P. W., & Tucker, K. (2011). Moving differently in pain: a new theory to explain the adaptation to pain. Pain, 152(3 Suppl), S90-s98. doi:10.1016/j.pain.2010.10.020
45. Hori, M., Hasegawa, H., & Takasaki, H. (2019). Comparisons of hamstring flexibility between individuals with and without low back pain: systematic review with meta-analysis. Physiotherapy Theory and Practice, 1-24. doi:10.1080/09593985.2019.1639868
46. Hoy, D., Bain, C., Williams, G., March, L., Brooks, P., Blyth, F., . . . Buchbinder, R. (2012). A systematic review of the global prevalence of low back pain. Arthritis & Rheumatism, 64(6), 2028-2037. doi:10.1002/art.34347
47. Huijbregts, P. (2004). Lumbar spine coupled motions: A literature review with clinical implications. Orthopaedic Division Review.
48. Jäger, M., Jordan, C., Theilmeier, A., Wortmann, N., Kuhn, S., Nienhaus, A., & Luttmann, A. (2013). Lumbar-load analysis of manual patient-handling activities for biomechanical overload prevention among healthcare workers. Annals of Occupational Hygiene, 57(4), 528-544. doi:10.1093/annhyg/mes088
49. Johnson, E. N., & Thomas, J. S. (2010). Effect of hamstring flexibility on hip and lumbar spine joint excursions during forward-reaching tasks in participants with and without low back pain. Archives of Physical Medicine and Rehabilitation, 91(7), 1140-1142. doi:10.1016/j.apmr.2010.04.003
50. Kamper, S. J., Henschke, N., Hestbaek, L., Dunn, K. M., & Williams, C. M. (2016). Musculoskeletal pain in children and adolescents. Brazilian journal of physical therapy, 20(3), 275-284. doi:10.1590/bjpt-rbf.2014.0149
51. Karayannis, N. V., Smeets, R. J., van den Hoorn, W., & Hodges, P. W. (2013). Fear of Movement Is Related to Trunk Stiffness in Low Back Pain. PloS One, 8(6), e67779. doi:10.1371/journal.pone.0067779
52. Kelly-Hayes, M., Jette, A. M., Wolf, P. A., D'Agostino, R. B., & Odell, P. M. (1992). Functional limitations and disability among elders in the Framingham Study. American Journal of Public Health, 82(6), 841-845. doi:10.2105/ajph.82.6.841
53. Kim, M. H., Yi, C. H., Kwon, O. Y., Cho, S. H., Cynn, H. S., Kim, Y. H., . . . Jung, D. H. (2013). Comparison of lumbopelvic rhythm and flexion-relaxation response between 2 different low back pain subtypes. Spine, 38(15), 1260-1267. doi:10.1097/BRS.0b013e318291b502
54. Koppenhaver, S. L., Scutella, D., Sorrell, B. A., Yahalom, J., Fernández-de-las-Peñas, C., Childs, J. D., . . . Shinohara, M. (2019). Normative parameters and anthropometric variability of lumbar muscle stiffness using ultrasound shear-wave elastography. Clinical Biomechanics, 62, 113-120. doi:https://doi.org/10.1016/j.clinbiomech.2019.01.010
55. Laird, R. A., Gilbert, J., Kent, P., & Keating, J. L. (2014). Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskeletal Disorders, 15, 229. doi:10.1186/1471-2474-15-229
56. Laird, R. A., Keating, J. L., & Kent, P. (2018). Subgroups of lumbo-pelvic flexion kinematics are present in people with and without persistent low back pain. BMC Musculoskeletal Disorders, 19(1), 309. doi:10.1186/s12891-018-2233-1
57. Laird, R. A., Keating, J. L., Ussing, K., Li, P., & Kent, P. (2019). Does movement matter in people with back pain? Investigating 'atypical' lumbo-pelvic kinematics in people with and without back pain using wireless movement sensors. BMC Musculoskeletal Disorders, 20(1), 28. doi:10.1186/s12891-018-2387-x
58. Latash, M. L., & Zatsiorsky, V. M. (1993). Joint stiffness: Myth or reality? Human Movement Science, 12(6), 653-692. doi:https://doi.org/10.1016/0167-9457(93)90010-M
59. Lee, Y., Kim, M., & Lee, H. (2021). The Measurement of Stiffness for Major Muscles with Shear Wave Elastography and Myoton: A Quantitative Analysis Study. Diagnostics (Basel), 11(3). doi:10.3390/diagnostics11030524
60. Legaspi, O., & Edmond, S. L. (2007). Does the Evidence Support the Existence of Lumbar Spine Coupled Motion? A Critical Review of the Literature. Journal of Orthopaedic and Sports Physical Therapy, 37(4), 169-178. doi:10.2519/jospt.2007.2300
61. Leinonen, V., Kankaanpää, M., Airaksinen, O., & Hänninen, O. (2000). Back and hip extensor activities during trunk flexion/extension: effects of low back pain and rehabilitation. Archives of Physical Medicine and Rehabilitation, 81(1), 32-37. doi:10.1016/s0003-9993(00)90218-1
62. Li, Y., McClure, P. W., & Pratt, N. (1996). The effect of hamstring muscle stretching on standing posture and on lumbar and hip motions during forward bending. Physical Therapy, 76(8), 836-845; discussion 845-839. doi:10.1093/ptj/76.8.836
63. Liemohn, W., Sharpe, G. L., & Wasserman, J. F. (1994). Criterion Related Validity of the Sit-and-Reach Test. The Journal of Strength & Conditioning Research, 8(2). Retrieved from https://journals.lww.com/nsca-jscr/Fulltext/1994/05000/Criterion_Related_Validity_of_the_Sit_and_Reach.6.aspx
64. Liu, T., Khalaf, K., Adeeb, S., & El-Rich, M. (2019). Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study. Journal of Biomechanics, 82, 116-123. doi:10.1016/j.jbiomech.2018.10.009
65. Macrae, I. F., & Wright, V. (1969). Measurement of back movement. Annals of the Rheumatic Diseases, 28(6), 584-589. doi:10.1136/ard.28.6.584
66. Magnusson, M. L., Bishop, J. B., Hasselquist, L., Spratt, K. F., Szpalski, M., & Pope, M. H. (1998). Range of motion and motion patterns in patients with low back pain before and after rehabilitation. Spine, 23(23), 2631-2639. doi:10.1097/00007632-199812010-00019
67. Magnusson, S. P., Simonsen, E. B., Aagaard, P., Sørensen, H., & Kjaer, M. (1996). A mechanism for altered flexibility in human skeletal muscle. Journal of Physiology, 497 ( Pt 1)(Pt 1), 291-298. doi:10.1113/jphysiol.1996.sp021768
68. Maher, C., Underwood, M., & Buchbinder, R. (2017). Non-specific low back pain. The Lancet, 389(10070), 736-747. doi:10.1016/S0140-6736(16)30970-9
69. Marras, W. S., Ferguson, S. A., Burr, D., Davis, K. G., & Gupta, P. (2004). Spine loading in patients with low back pain during asymmetric lifting exertions. Spine J, 4(1), 64-75. doi:10.1016/s1529-9430(03)00424-8
70. Marshall, P. W., Mannion, J., & Murphy, B. A. (2009). Extensibility of the hamstrings is best explained by mechanical components of muscle contraction, not behavioral measures in individuals with chronic low back pain. Pm&r, 1(8), 709-718.
71. Masaki, M., Ikezoe, T., Yanase, K., Ji, X., Umehara, J., Aoyama, J., . . . Ichihashi, N. (2019). Association of Pain History and Current Pain With Sagittal Spinal Alignment and Muscle Stiffness and Muscle Mass of the Back Muscles in Middle-aged and Elderly Women. Clin Spine Surg, 32(7), E346-e352. doi:10.1097/bsd.0000000000000793
72. Matheve, T., De Baets, L., Bogaerts, K., & Timmermans, A. (2019). Lumbar range of motion in chronic low back pain is predicted by task-specific, but not by general measures of pain-related fear. European Journal of Pain (London, England), 23(6), 1171-1184. doi:10.1002/ejp.1384
73. Mayer, T. G., Tencer, A. F., Kristoferson, S., & Mooney, V. (1984). Use of noninvasive techniques for quantification of spinal range-of-motion in normal subjects and chronic low-back dysfunction patients. Spine, 9(6), 588-595. doi:10.1097/00007632-198409000-00009
74. Mayorga-Vega, D., Merino-Marban, R., & Viciana, J. (2014). Criterion-Related Validity of Sit-and-Reach Tests for Estimating Hamstring and Lumbar Extensibility: a Meta-Analysis. Journal of Sports Science & Medicine, 13(1), 1-14. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24570599
75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918544/
76. McClure, P. W., Esola, M., Schreier, R., & Siegler, S. (1997). Kinematic analysis of lumbar and hip motion while rising from a forward, flexed position in patients with and without a history of low back pain. Spine, 22(5), 552-558. doi:10.1097/00007632-199703010-00019
77. McGorry, R. W., & Lin, J. H. (2012). Flexion relaxation and its relation to pain and function over the duration of a back pain episode. PloS One, 7(6), e39207. doi:10.1371/journal.pone.0039207
78. McNair, P. J., Wood, G. A., & Marshall, R. N. (1992). Stiffness of the hamstring muscles and its relationship to function in anterior cruciate ligament deficient individuals. Clinical Biomechanics, 7(3), 131-137. doi:https://doi.org/10.1016/0268-0033(92)90027-2
79. Meacham, K., Shepherd, A., Mohapatra, D. P., & Haroutounian, S. (2017). Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr Pain Headache Rep, 21(6), 28. doi:10.1007/s11916-017-0629-5
80. Menke, J. M. (2014). Do manual therapies help low back pain? A comparative effectiveness meta-analysis. Spine, 39(7), E463-472. doi:10.1097/brs.0000000000000230
81. Murray, C. J. L., Barber, R. M., Foreman, K. J., Ozgoren, A. A., Abd-Allah, F., Abera, S. F., . . . Vos, T. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. The Lancet, 386(10009), 2145-2191. doi:10.1016/S0140-6736(15)61340-X
82. Narimani, M., & Arjmand, N. (2018). Three-dimensional primary and coupled range of motions and movement coordination of the pelvis, lumbar and thoracic spine in standing posture using inertial tracking device. Journal of Biomechanics, 69, 169-174. doi:10.1016/j.jbiomech.2018.01.017
83. Neumann, D. A., Kelly, E. R., Kiefer, C. L., Martens, K., & Grosz, C. M. (2017). Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation: Elsevier.
84. Norkin, C. C., & White, D. J. (2016). Measurement of joint motion: a guide to goniometry: FA Davis.
85. Norris, C. M. (2000). Back stability: Human Kinetics Publishers.
86. O'Sullivan, P. B. (2000). Masterclass. Lumbar segmental ‘instability’: clinical presentation and specific stabilizing exercise management. Manual Therapy, 5(1), 2-12. doi:https://doi.org/10.1054/math.1999.0213
87. O'Sullivan, P. B., Mitchell, T., Bulich, P., Waller, R., & Holte, J. (2006). The relationship beween posture and back muscle endurance in industrial workers with flexion-related low back pain. Manual Therapy, 11(4), 264-271. doi:10.1016/j.math.2005.04.004
88. O’Sullivan, P. (2005). Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Manual Therapy, 10(4), 242-255. doi:https://doi.org/10.1016/j.math.2005.07.001
89. Olugbade, T., Bianchi-Berthouze, N., & Williams, A. C. C. (2019). The relationship between guarding, pain, and emotion. Pain Rep, 4(4), e770. doi:10.1097/pr9.0000000000000770
90. Osumi, M., Sumitani, M., Otake, Y., Nishigami, T., Mibu, A., Nishi, Y., . . . Morioka, S. (2019). Kinesiophobia modulates lumbar movements in people with chronic low back pain: a kinematic analysis of lumbar bending and returning movement. European Spine Journal, 28(7), 1572-1578. doi:10.1007/s00586-019-06010-4
91. Panjabi, M. M. (1992). The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement. Clinical Spine Surgery, 5(4), 383-389. Retrieved from https://journals.lww.com/jspinaldisorders/Fulltext/1992/12000/The_Stabilizing_System_of_the_Spine__Part_I_.1.aspx
92. Peach, J. P., Sutarno, C. G., & McGill, S. M. (1998). Three-dimensional kinematics and trunk muscle myoelectric activity in the young lumbar spine: a database. Archives of Physical Medicine and Rehabilitation, 79(6), 663-669. doi:10.1016/s0003-9993(98)90041-7
93. Pruyn, E. C., Watsford, M. L., & Murphy, A. J. (2016). Validity and reliability of three methods of stiffness assessment. Journal of Sport and Health Science, 5(4), 476-483. doi:https://doi.org/10.1016/j.jshs.2015.12.001
94. Reis, F. J. J., & Macedo, A. R. (2015). Influence of hamstring tightness in pelvic, lumbar and trunk range of motion in low back pain and asymptomatic volunteers during forward bending. Asian spine journal, 9(4), 535.
95. Roland, M. O. (1986). A critical review of the evidence for a pain-spasm-pain cycle in spinal disorders. Clinical Biomechanics (Bristol, Avon), 1(2), 102-109. doi:10.1016/0268-0033(86)90085-9
96. Rustenburg, C. M. E., Kingma, I., Holewijn, R. M., Faraj, S. S. A., van der Veen, A., Bisschop, A., . . . Emanuel, K. S. (2020). Biomechanical properties in motion of lumbar spines with degenerative scoliosis. Journal of Biomechanics, 102, 109495. doi:10.1016/j.jbiomech.2019.109495
97. Sadler, S. G., Spink, M. J., Ho, A., De Jonge, X. J., & Chuter, V. H. (2017). Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: a systematic review of prospective cohort studies. BMC Musculoskeletal Disorders, 18(1), 179. doi:10.1186/s12891-017-1534-0
98. Sahrmann, S. (2002). Diagnosis and Treatment of Movement Impairment Syndromes: Mosby.
99. Sahrmann, S. (2011). Movement system impairment syndromes of the extremities, cervical and thoracic spines. St. Louis, Mo.: Elsevier/Mosby.
100. Sahrmann, S., Azevedo, D. C., & Dillen, L. V. (2017). Diagnosis and treatment of movement system impairment syndromes. Brazilian journal of physical therapy, 21(6), 391-399. doi:10.1016/j.bjpt.2017.08.001
101. Salt, E., Wiggins, A. T., Rayens, M. K., Hooker, Q., Shojaei, I., & Bazrgari, B. (2020). The relationship between indicators of lumbo-pelvic coordination and pain, disability, pain catastrophizing and depression in patients presenting with non-chronic low back pain. Ergonomics, 63(6), 724-734. doi:10.1080/00140139.2020.1755059
102. Sánchez-Zuriaga, D., Artacho-Pérez, C., & Biviá-Roig, G. (2016). Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension. J Electromyogr Kinesiol, 28, 152-157. doi:10.1016/j.jelekin.2016.04.007
103. Sanjeevi, R. (1982). A viscoelastic model for the mechanical properties of biological materials. Journal of Biomechanics, 15(2), 107-109. doi:10.1016/0021-9290(82)90042-2
104. Shojaei, I., Salt, E. G., & Bazrgari, B. (2020). A prospective study of lumbo-pelvic coordination in patients with non-chronic low back pain. Journal of Biomechanics, 102, 109306. doi:10.1016/j.jbiomech.2019.07.050
105. Shojaei, I., Vazirian, M., Salt, E. G., Van Dillen, L. R., & Bazrgari, B. (2017). Timing and magnitude of lumbar spine contribution to trunk forward bending and backward return in patients with acute low back pain. Journal of Biomechanics, 53, 71-77. doi:10.1016/j.jbiomech.2016.12.039
106. Shorten, M. R. (1987). Muscle Elasticity and Human Performance. In Medicine and Sport Science (pp. 1-18): S. Karger AG.
107. Sizer, P. S., Brismée, J.-M., & Cook, C. (2007). Coupling Behavior of the Thoracic Spine: A Systematic Review of the Literature. Journal of Manipulative and Physiological Therapeutics, 30(5), 390-399. doi:https://doi.org/10.1016/j.jmpt.2007.04.009
108. Solomonow, M., Hatipkarasulu, S., Zhou, B. H., Baratta, R. V., & Aghazadeh, F. (2003). Biomechanics and Electromyography of a Common Idiopathic Low Back Disorder. Spine, 28(12). Retrieved from https://journals.lww.com/spinejournal/Fulltext/2003/06150/Biomechanics_and_Electromyography_of_a_Common.6.aspx
109. Stewart, W. F., Ricci, J. A., Chee, E., Morganstein, D., & Lipton, R. (2003). Lost productive time and cost due to common pain conditions in the US workforce. JAMA, 290(18), 2443-2454. doi:10.1001/jama.290.18.2443
110. Takahashi, I., Kikuchi, S.-i., Sato, K., & Sato, N. (2006). Mechanical Load of the Lumbar Spine During Forward Bending Motion of the Trunk–A Biomechanical Study. Spine, 31(1), 18-23. doi:10.1097/01.brs.0000192636.69129.fb
111. Taylor, N., Goldie, P., & Evans, O. (2004). Movements of the pelvis and lumbar spine during walking in people with acute low back pain. Physiotherapy Research International, 9(2), 74-84. doi:10.1002/pri.304
112. Tojima, M., & Torii, S. (2018). COMPARISON OF LUMBOPELVIC RHYTHM AMONG ADOLESCENT SOCCER PLAYERS WITH AND WITHOUT LOW BACK PAIN. International Journal of Sports Physical Therapy, 13(2), 171-176. Retrieved from https://pubmed.ncbi.nlm.nih.gov/30090675
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063066/
113. Tucker, K. J., & Hodges, P. W. (2010). Changes in motor unit recruitment strategy during pain alters force direction. European Journal of Pain (London, England), 14(9), 932-938. doi:10.1016/j.ejpain.2010.03.006
114. Vazirian, M., Van Dillen, L. R., & Bazrgari, B. (2016). Lumbopelvic rhythm in the sagittal plane: A review of the effects of participants and task characteristics. International Musculoskeletal Medicine, 38(2), 51-58. doi:10.1080/17536146.2016.1241525
115. Vogt, L., Pfeifer, K., Portscher, M., & Banzer, W. (2000). Lumbar corsets: their effect on three-dimensional kinematics of the pelvis. J Rehabil Res Dev, 37(5), 495-499.
116. Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., . . . Murray, C. J. L. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1545-1602. doi:10.1016/S0140-6736(16)31678-6
117. Walker, B. F., Muller, R., & Grant, W. D. (2004). Low back pain in Australian adults. health provider utilization and care seeking. Journal of Manipulative and Physiological Therapeutics, 27(5), 327-335. doi:10.1016/j.jmpt.2004.04.006
118. Walshe, A. D. (1996). The validity and reliability of a test of lower body musculotendinous stiffness. European Journal of Applied Physiology and Occupational Physiology, 73(3-4), 332-339. doi:10.1007/BF02425495
119. Wattananon, P., Ebaugh, D., Biely, S. A., Smith, S. S., Hicks, G. E., & Silfies, S. P. (2017). Kinematic characterization of clinically observed aberrant movement patterns in patients with non-specific low back pain: a cross-sectional study. BMC musculoskeletal disorders, 18(1), 455-455. doi:10.1186/s12891-017-1820-x
120. Wernli, K., Tan, J. S., O'Sullivan, P., Smith, A., Campbell, A., & Kent, P. (2020). Does Movement Change When Low Back Pain Changes? A Systematic Review. Journal of Orthopaedic and Sports Physical Therapy, 50(12), 664-670. doi:10.2519/jospt.2020.9635
121. White, S., & Sahrmann, S. (1994). A movement system balance approach to management of musculoskeletal pain. Physical therapy of the cervical and thoracic spine, 2, 339-357.
122. Wieser, S., Horisberger, B., Schmidhauser, S., Eisenring, C., Brügger, U., Ruckstuhl, A., . . . Müller, U. (2011). Cost of low back pain in Switzerland in 2005. The European journal of health economics : HEPAC : health economics in prevention and care, 12(5), 455-467. doi:10.1007/s10198-010-0258-y
123. Williams, L., & Wilkins. (2017). Acsm Guidelines for Exercise Testing and Prescription, 10th Ed.: LWW.
124. Wilson, G., Elliott, B., & Wood, G. (1992). Stretch shorten cycle performance enhancement through flexibility training. Medicine and Science in Sports and Exercise, 24, 116-123. doi:10.1249/00005768-199201000-00019
125. Wilson, G. J., Wood, G. A., & Elliott, B. C. (1991). Optimal stiffness of series elastic component in a stretch-shorten cycle activity. Journal of Applied Physiology, 70(2), 825-833. doi:10.1152/jappl.1991.70.2.825
126. Wong, T. K. T., & Lee, R. Y. W. (2004). Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Human Movement Science, 23(1), 21-34. doi:https://doi.org/10.1016/j.humov.2004.03.004
127. Woodley, S. J., & Mercer, S. R. (2005). Hamstring Muscles: Architecture and Innervation. Cells Tissues Organs, 179(3), 125-141. doi:10.1159/000085004
128. Wu, Z., Zhu, Y., Xu, W., Liang, J., Guan, Y., & Xu, X. (2020). Analysis of Biomechanical Properties of the Lumbar Extensor Myofascia in Elderly Patients with Chronic Low Back Pain and That in Healthy People. Biomed Res Int, 2020, 7649157. doi:10.1155/2020/7649157
校內:2026-08-18公開