| 研究生: |
王櫻芮 Wang, Ying-Jui |
|---|---|
| 論文名稱: |
遠距工作與人工智慧輔助下的工作性質對審計員法律責任的影響 The Effect of Telecommuting and AI-assisted Task Nature on Auditors’ Legal Liability |
| 指導教授: |
金書賢
Kim, Sarah 廖麗凱 Liao, Li-Kai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 審計員責任 、遠距工作 、人工智慧 |
| 外文關鍵詞: | auditor liability, telecommuting, artificial intelligence |
| 相關次數: | 點閱:92 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著新冠肺炎(Covid-19)的全球傳播以及彈性工作的安排與日俱增,審計產業對遠距工作的需求也隨之增加。此外,輔助審計員判斷的人工智慧(AI)輔助軟體變得越來越多樣化。儘管AI輔助軟體對審計員法律責任的影響可能因審計工作的性質有所差異(Backof, Grenier 和 Rasso 2022),但對於遠距工作與AI輔助下的工作性質對於審計員法律責任的共同影響方面的研究較少。在本研究中,我將研究遠距工作(在客戶端工作 vs.遠距工作vs.在家工作)與運用AI輔助軟體的工作性質(具體 vs.模糊)如何影響陪審團在審計失敗情況下對審計員過失的評估。我招募有資格擔任陪審團的參與者進行實驗,結果顯示,當審計失敗是發生在審計員以遠距工作的方式(相比於客戶端工作)完成工作時,陪審團更容易判定過失。然而,如果審計員在需要具體判斷(而非模糊)的工作中運用人工智慧,這種過失判定的影響往往會減輕。在遠距辦公與輔助AI軟體應用更加普及的時代,這項研究透過探討如何減少相關法律風險,為實踐與文獻提供貢獻。
The worldwide spread of Covid 19, coupled with the increasing flexibility in work arrangements, has led to a rise in telecommuting within audit firms. Additionally, there is increasing variety of artificial intelligence (AI) based software in assisting auditors’ judgment. Although the effect of AI-based software on auditors’ liabilities may vary depending on audit task nature (Backof, Grenier and Rasso 2022), there has been little investigation into the joint effect of telecommuting and the nature of AI-assisted task on auditors’ legal liabilities. In this study, I investigate how telecommuting (on-site working vs working remotely from the client site vs. working from home) and nature (concrete vs. opaque) of AI-assisted tasks affect jurors’ negligence assessment of the auditor in case of an audit failure. Utilizing an experiment with juror-eligible participants shows that jurors tend to deliver increased negligence verdicts when an audit failure is related to the work completed by the in-charge auditor during telecommute, compared to when it is not. However, this effect tends to be diminished if the auditor has utilized an AI in a task that requires concrete (as opposed to opaque) judgment. In an era where telecommuting and AI-based software are more prevalent, this study contributes to the practice and literature by considering how to reduce related legal risks.
Alicke, M. D. (2000). Culpable control and the psychology of blame. Psychological bulletin, 126(4), 556.
Albitar, K., Gerged, A. M., Kikhia, H., & Hussainey, K. (2020). Auditing in times of social distancing: the effect of COVID-19 on auditing quality. International Journal of Accounting & Information Management, 29(1), 169-178.
Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40, 100402.
Backof, A. G. (2015). The impact of audit evidence documentation on jurors' negligence verdicts and damage awards. The Accounting Review, 90(6), 2177-2204.
Backof, A., Grenier, J. H., & Rasso, J. (2022). When does reliance on technology elevate auditor liability. Working paper, Miami University.
Baldwin, A. A., Brown, C. E., & Trinkle, B. S. (2006). Opportunities for artificial intelligence development in the accounting domain: the case for auditing. Intelligent Systems in Accounting, Finance & Management: International Journal, 14(3), 77-86.
Barr-Pulliam, D., Brown-Liburd, H. L., & Sanderson, K. A. (2022). The effects of the internal control opinion and use of audit data analytics on perceptions of audit quality, assurance, and auditor negligence. Auditing: A Journal of Practice & Theory, 41(1), 25-48.
Bhattacharjee, S., Hillison, S. M., & Malone, C. L. (2020). Auditing from a distance: The impact of remote auditing and supervisor monitoring on analytical procedures judgments. The Accounting Review, 1-24.
Bloom, N., Liang, J., Roberts, J., & Ying, Z. J. (2015). Does working from home work? Evidence from a Chinese experiment. The Quarterly journal of economics, 130(1), 165-218.
Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809-825.
Chang, C. J., Li, Y., & Luo, Y. (2022). Auditor distraction and audit quality. Review of Accounting and Finance, 21(4), 341-373.
Chukwuani, V. N., & Egiyi, M. A. (2020). Automation of Accounting Processes: Impact of Artificial Intelligence. International Journal of Research and Innovation in Social Science (IJRISS), 4, 444-449.
Christ, M. H., Emett, S. A., Summers, S. L., & Wood, D. A. (2021). Prepare for takeoff: Improving asset measurement and audit quality with drone-enabled inventory audit procedures. Review of accounting studies, 1-21.
Commerford, B. P., Dennis, S. A., Joe, J. R., & Ulla, J. W. (2022). Man versus machine: Complex estimates and auditor reliance on artificial intelligence. Journal of Accounting Research, 60(1), 171-201.
Crowley, M. J., O'Callaghan, M. G., & Ball, P. J. (1994). The juridical impact of psychological expert testimony in a simulated child sexual abuse trial. Law and Human Behavior, 18(1), 89-105.
Cui, J., & Robertson, J. C. (2022). The Effects of the Use of Artificial Intelligence and Task Distinctiveness on Auditor Liability. Available at SSRN 4038554.
Deloitte. (2021a). Digital workplaces and the hybrid work model. Deloitte (July 19). Available at: https://www2.deloitte.com/us/en/blog/human-capital-blog/2021/digital-workplace-and-the-hybrid-work-model.html
Deloitte. (2021b). Audit Quality Report 2021: We are Quality. Available at: https://www.iasplus.com/en-ca/publications/publications/2022/2021-audit-quality-report-we-are-quality
DeAngelo, L. E. (1981). Auditor size and audit quality. Journal of accounting and economics, 3(3), 183-199.
Elliott, W. B., Hodge, F. D., Kennedy, J. J., & Pronk, M. (2007). Are MBA students a good proxy for nonprofessional investors?. The Accounting Review, 82(1), 139-168.
Ernst and Young (2021). EY How the auditing profession is transforming to meet future challenges. EY (August 2). Available at: https://www.ey.com/en_tw/assurance/how-the-auditing-profession-is-transforming-to-meet-future-challenges
Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process?. Review of Accounting Studies, 27(3), 938-985.
Farcane, N., Bunget, O. C., Blidisel, R., Dumitrescu, A. C., Deliu, D., Bogdan, O., & Burca, V. (2023). Auditors’ perceptions on work adaptability in remote audit: a COVID-19 perspective. Economic Research-Ekonomska Istraživanja, 36(1), 422-459.
Felstead, A., & Henseke, G. (2017). Assessing the growth of remote working and its consequences for effort, well‐being and work‐life balance. New Technology, Work and Employment, 32(3), 195-212.
Francis, J. R. (2004). What do we know about audit quality? The British accounting review, 36(4), 345-368.
Francis, J. R., Golshan, N., & Hallman, N. J. (2022). Does distance matter? An investigation of partners who audit distant clients and the effects on audit quality. Contemporary Accounting Research, 39(2), 947-981.
ForsterLee, R., ForsterLee, L., Horowitz, I. A., & King, E. (2006). The effects of defendant race, victim race, and juror gender on evidence processing in a murder trial. Behavioral Sciences & the Law, 24(2), 179-198.
Gajendran, R. S., & Harrison, D. A. (2007). The good, the bad, and the unknown about telecommuting: meta-analysis of psychological mediators and individual consequences. Journal of applied psychology, 92(6), 1524.
Gong, S., Ho, N., Jin, J. Y., & Kanagaretnam, K. (2022). Audit quality and COVID-19 restrictions. Managerial Auditing Journal, 37(8), 1017-1037.
Grenier, J. H., Lowe, D. J., Reffett, A., & Warne, R. C. (2015). The effects of independent expert recommendations on juror judgments of auditor negligence. Auditing: A Journal of Practice & Theory, 34(4), 157-170.
Hasson, B. K., Bagley, P. L., and Eller, C. K.(2023). How remote work affected early-career auditors. Journal of Accountancy. Available at: https://www.journalofaccountancy.com/issues/2023/apr/how-remote-work-affected-early-caree-auditors.html
Hoewe, J. (2017). Manipulation check. The international encyclopedia of communication research methods, 1-5.
Hooda, N., Bawa, S., & Rana, P. S. (2020). Optimizing fraudulent firm prediction using ensemble machine learning: a case study of an external audit. Applied Artificial Intelligence, 34(1), 20-30.
IAASB. (2014). A Framework for Audit Quality: Key Elements that Create an Environment for Audit Quality. Available at: https://www.iaasb.org/publications/framework-audit-quality-key-elements-create-environment-audit-quality-3
Information Systems Audit & Conrol Association. (2022). The evolution of audit in the wake of the pandemic. ISACA J., 1, 1-7. Available at https://www.isaca.org/resources/isaca-journal/issues/2022/volume-1/the-evolution-of-audit-in-the-wake-of-the-pandemic
Jin, Y., Tian, G., Wu, D., & Xin, X. (2022). Remote auditing and audit quality: Evidence from the field. Available at SSRN 4076612.
Kadous, K. (2000). The effects of audit quality and consequence severity on juror evaluations of auditor responsibility for plaintiff losses. The Accounting Review, 75(3), 327-341.
KPMG. (2017). KPMG Clara -a smart audit platform. Available at:
https://assets.kpmg.com/content/dam/kpmg/qm/pdf/kpmg-clara-a-smart-audit-platform.pdf
KPMG. (2018). Automated contract data extraction within the IFRS 16 lease framework. Available at: https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2018/10/automated-contract-data-extraction-within-the-ifrs-16-lease-framework.pdf
KPMG. (2020). How the pandemic is accelerating the future of audit. Available at: https://home.kpmg/ca/en/home/insights/2020/10/how-the-pandemic-is-accelerating-the-future-of-audit.html.
KPMG. (2021). From Remote to Hybrid Work Available at: https://advisory.kpmg.us/content/dam/advisory/en/pdfs/2021/from-remote-to-hybrid-work.pdf
Kipp, P., Olvera, R., Robertson, J. C., & Vinson, J. (2022). Examining Algorithm Aversion in Jurors’ Assessments of Auditor Negligence: Audit Data Analytic Exception Follow Up with Artificial Intelligence. Available at SSRN 3775740.
Lowe, D. J., Reckers, P. M., & Whitecotton, S. M. (2002). The effects of decision‐aid use and reliability on jurors' evaluations of auditor liability. The Accounting Review, 77(1), 185-202.
Libby, R., & Witz, P. (2020). Can Artificial Intelligence Reduce the Effect of Independence Conflicts on Audit Firm Liability?. Available at SSRN 3734629.
Messier Jr, W. F., Simon, C. A., & Smith, J. L. (2013). Two decades of behavioral research on analytical procedures: What have we learned?. Auditing: A Journal of Practice & Theory, 32(1), 139-181.
Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of business ethics, 167(2), 209-234.
Ovaska,S.and Murphy,M., CPA(2022). A needed push into remote auditing. Journal of Accountancy, News, Available at https://www.journalofaccountancy.com/news/2022/may/needed-push-into-remote-auditing.html
Pickerd, J., & Piercey, M. D. (2021). The effects of high estimate uncertainty in auditor negligence litigation. Contemporary Accounting Research, 38(4), 3182-3213.
Public Company Accounting Oversight Board (PCAOB) (2020). Spotlight: Staff observations and reminders during the COVID-19 pandemic. Available at: https://pcaobus.org/documents/staff-observations-reminders-covid-19-spotlight.pdf
Public Company Accounting Oversight Board (PCAOB) (2023). Spotlight: Staff Priorities for 2023 Inspections. Available at: https://pcaobus.org/documents/priorities-spotlight.pdf
PricewaterhouseCoopers (PwC) (2016). Technology in the PwC Audit. Available at:
https://www.pwchk.com/en/audit-assurance/technology-in-pwc-audit.pdf
PricewaterhouseCoopers (PwC) (2018). GL.ai PwC’s anomaly detection for the general ledger. Available at: https://www.pwc.com/m1/en/events/socpa-2020/documents/gl-ai-brochure.pdf
PricewaterhouseCoopers (PwC) (2021). In the spotlight: COVID-19 – what’s here to stay? Disclose Magazine 32, Available at:
https://www.pwc.ch/en/insights/disclose/32/driving-digital-transformation-ahead.html
Rose, A. M., Rose, J. M., Suh, I., & Thibodeau, J. C. (2020). Analytical procedures: are more good ideas always better for audit quality?. Behavioral Research in Accounting, 32(1), 37-49.
Ruiz-Barbadillo, E., Gómez-Aguilar, N., De Fuentes-Barberá, C., & García-Benau, M. A. (2004). Audit quality and the going-concern decision-making process: Spanish evidence. European Accounting Review, 13(4), 597-620.
Shaikh, H., Jokhio, M. U., Maher, Z. A., Chandio, S., Bin Abdullah, M. M., Raza, A., & Shah, A. (2018). Beyond traditional audits: The implications of information technology on auditing. International Journal of Engineering and Technology (UAE), 7(2), 5-11.
Smollan, R. K., Morrison, R. L., & Cooper-Thomas, H. D. (2023). Working from home during lockdown: the impact on performance and wellbeing. Journal of Management & Organization, 1-22.
Teeter, R. A., Alles, M. G., & Vasarhelyi, M. A. (2010). The remote audit. Journal of emerging technologies in accounting, 7(1), 73-88.
Thompson, K. (2022). Out of office: Examining how remote auditing can affect audit quality. University of South Carolina.
Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological review, 117(2), 440.
Williams, L. E., & Bargh, J. A. (2008). Experiencing physical warmth promotes interpersonal warmth. Science, 322(5901), 606-607.