簡易檢索 / 詳目顯示

研究生: 孫甯媯
Sun, Ning-Kuei
論文名稱: 氧化矽及矽酸鐵孔洞材料在牙本質小管填補及鍶離子吸附應用之研究
Synthesis of Mesoporous Silica and Iron Phyllosilicates for Application in Dentinal Tubules Occlusion and Strontium Ion Removal
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 中孔洞氧化矽材料矽酸鐵孔洞材料牙本質過敏症鍶離子吸附造粒
外文關鍵詞: mesoporous silica, iron phyllosilicates, dentin hypersensitivity, strontium removal, granulation
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題是透過控制反應參數,合成具不同表面性質與組成的孔洞材料,並依照各材料之特性,應用於不同領域中。研究中合成了三種孔洞材料,包含有中孔洞氧化矽、鈣氧化矽複合材料以及矽酸鐵孔洞材料。首先大量製造高比表面積之中孔洞氧化矽材料,作為鈣、磷酸根離子載體用於封填牙本質小管,並針對治療牙本質過敏症研發新型牙本質封填材料。此外也成功地以酸化和煅燒過程,將木賊草轉為孔洞鈣氧化矽複合材料,同樣應用於牙本質小管的填補上。
    過去治療牙本質過敏症的長效性問題於本研究中獲得了改善,中孔洞氧化矽於本新型牙本質封填材料的開發中扮演關鍵的角色,其多孔性能防止磷酸氫鈣於表面生成結晶,將鈣離子與磷酸根離子引入牙本質小管中,之後再行結晶便可達到良好封填的效果。本研究之新型牙本質封填材料可有效填補牙本質小管的鈣磷比範圍廣,因此未來應用於臨床治療上相當具有潛力。現今環保意識受到重視,為響應綠色化學的概念,將禾本科植物—木賊草,經酸洗處理並鍛燒移除有機物質所得到的鈣氧化矽複合材料,因為孔洞性質與中孔洞氧化矽相似,用於填補小管也達到良好牙本質封閉的效果。
    另外,本研究也成功使用反滴定法將鐵離子引入氧化矽中,合成矽酸鐵孔洞材料可用來作為鍶離子的吸附劑。本實驗所使用的反滴定法將硝酸鐵同時作為酸源與鐵離子源,以滴定方式進入矽酸鈉中進行反應,無須經過水熱處理便可獲得高比表面積之矽酸鐵孔洞材料,於未來大量生產可省下龐大的能源花費。矽酸鐵孔洞材料表面帶有負電位置,因此在鍶離子的吸附上有良好的選擇性和移除率,其吸附容量高 (54.05 mg/g)。將矽酸鐵孔洞材料結合褐藻酸鈣進行造粒之後,成功解決的吸附劑於溶液中回收的問題,在未來實際應用上有發展潛力。

    Porous materials with tunable surface properties were synthesized through an appropriate control of the reaction pH value, hydrothermal processing parameters, and calcination temperature. In this study, the porous materials presented two applications, namely the occlusion of dentinal tubules and the adsorption of strontium ions. Three porous materials were prepared: mesoporous silica (MS), porous calcium oxide-silica composite (CaO-SiO2 composite), and iron phyllosilicate. The MS was used to deliver calcium and phosphate ions into dentinal tubules, whereupon they formed CaHPO4·2H2O (denoted as DCPD) crystal to a depth of approximately 60 μm under optimal conditions. In accordance with the principles of green chemistry, the CaO-SiO2 composite was prepared from. Equisetum hyemale, which was acid washed to remove ions other than calcium and then calcinated to remove any remaining organics. The porous CaO-SiO2 composite showed similar surface properties to those of the MS. Moreover, it achieved a dentinal tubule penetration depth of nearly 90 μm. Consequently, it showed a good potential for the mitigation of dentin hypersensitivity. Iron phyllosilicate was synthesized using a back-titration method; thereby eliminating the need for additional acid sources and reducing the energy cost by removing the need for hydrothermal processing. The synthesized material was found to have a high specific surface area 329 m2/g and a good dispersion. When used as an adsorbent for strontium ions in waste water, it showed a maximum adsorption capacity of around 54.05 mg/g. Moreover, when combined with calcium alginate to achieve granulation by extrusion-dripping, the iron phyllosilicate showed a good potential as a fixed bed column filler adsorbate.

    第一章 緒論 1 1.1 中孔洞材料 1 1.1.1 中孔洞材料介紹 1 1.1.2 中孔洞材料研究範疇 2 1.2 矽酸鹽的介紹 3 1.3 頁矽酸鹽(phyllosilicates)的介紹 5 1.3.1 常見之合成方法 6 1.4 鹽溶/鹽析效應 ( salting in / salting out effect ) 8 1.4.1 鹽溶效應( salting in effect ) 8 1.4.2 鹽析效應( salting out effect ) 8 1.5 吸附理論 9 1.5.1 吸附理論之介紹 9 1.5.2 等溫吸附模式 9 1.5.3 吸附動力學模式 11 1.6 牙本質過敏症定義 12 1.7 研究動機 13 第二章 實驗部份及儀器設備介紹 14 2.1 實驗藥品 14 2.2 去敏牙材試劑的製備 15 2.2.1 中孔洞二氧化矽之合成步驟 15 2.2.2 新型牙本質封填試劑 16 2.3 以木賊草合成鈣氧化矽複合材料 17 2.4 鈣氧化矽複合材填補牙本質小管 18 2.5 反滴定法製備矽酸鐵孔洞材料 18 2.5.1 矽酸鐵造粒步驟 18 2.5.2 以多重塗佈法合成高Fe/Si之矽酸鐵孔洞材料 19 2.6 鍶離子的檢測 20 2.7 儀器鑑定分析 20 2.7.1 熱重分析儀 (Thermogravimetry Analysis;TGA) 20 2.7.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 21 2.7.3 穿透式電子顯微鏡(Transimission Electron Microscopy, TEM) 21 2.7.4 火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer;AA) 22 2.7.5 氮氣等溫吸附/脫附測量儀(N2 adsorption-desorption isotherm) 22 第三章 氧化矽孔洞材料之合成並應用於新型牙本質封填材料之研究 28 3.1 研究目的及動機 28 3.2 仿磷酸氫鈣之生成機制 30 3.3 中孔洞氧化矽之基本鑑定 32 3.4 賦形劑對牙本質小管封閉效果的影響 33 3.5 不同賦形劑對牙本質小管封閉效果的比較 34 3.6 不同pH值之抗敏劑對牙本質小管的封閉效果 35 3.7 不同鈣磷比對封閉效果之影響 37 3.8 放置時間對填補深度的影響 39 3.9 與市售產品之比較 40 3.10 鈣氧化矽複合材的基本鑑定 41 3.11 利用不同酸處理之鈣氧化矽複合材的填補差異 42 3.12 鈣氧化矽複合材長晶時間對填補效果的比較 43 3.13 鈣磷比對填補能力的影響 45 3.14 不同pH值之環境對牙本質小管的封閉效果 46 第四章 矽酸鐵應用於去除溶液中的鍶離子 47 4.1 研究目的及動機 47 4.2 材料之基本鑑定 48 4.3 鐵矽莫耳比對鍶離子吸附之能力 50 4.4 吸附環境之pH值的影響 52 4.5 矽酸鐵吸附劑之動力學吸附模型 53 4.6 矽酸鐵吸附劑之等溫吸附模型 54 4.7 矽酸鐵孔洞材料對鍶離子之選擇性 56 4.8 矽酸鐵造粒之材料鑑定 57 4.9 以矽酸鐵造粒移除溶液中的鍶離子 59 第五章 總結 60 參考文獻 62

    1. Everett, D., Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry 1972, 31 (4), 577-638.
    2. Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D., Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie 2003, 115 (27), 3254-3258.
    3. Vinu, A.; Murugesan, V.; Hartmann, M., Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1. Chemistry of materials 2003, 15 (6), 1385-1393.
    4. Lin, H. P.; Kuo, C. L.; Wan, B. Z.; Mou, C. Y., Optimum synthesis of mesoporous silica materials from acidic condition. Journal of the Chinese Chemical Society 2002, 49 (5), 899-906.
    5. Alfredsson, V.; Anderson, M. W., Structure of MCM-48 revealed by transmission electron microscopy. Chemistry of materials 1996, 8 (5), 1141-1146.
    6. Lin, H.-P.; Mou, C.-Y., Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts of Chemical Research 2002, 35 (11), 927-935.
    7. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D., Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. The Journal of Physical Chemistry B 2002, 106 (10), 2552-2558.
    8. Bhaumik, A.; Inagaki, S., Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. Journal of the American Chemical Society 2001, 123 (4), 691-696.
    9. Zhang, Z.; Han, Y.; Zhu, L.; Wang, R.; Yu, Y.; Qiu, S.; Zhao, D.; Xiao, F. S., Strongly acidic and high‐temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition 2001, 40 (7), 1258-1262.
    10. Walcarius, A.; Etienne, M.; Lebeau, B., Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chemistry of materials 2003, 15 (11), 2161-2173.
    11. Yokoi, T.; Yoshitake, H.; Tatsumi, T., Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di-and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry 2004, 14 (6), 951-957.
    12. Noll, F.; Sumper, M.; Hampp, N., Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Letters 2002, 2 (2), 91-95.
    13. Tian, Z. R.; Liu, J.; Voigt, J. A.; Mckenzie, B.; Xu, H., Hierarchical and Self‐Similar Growth of Self‐Assembled Crystals. Angewandte Chemie 2003, 115 (4), 429-433.
    14. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y., Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Advanced Materials 2000, 12 (3), 206-209.
    15. Jiang, P.; Bertone, J. F.; Colvin, V. L., A lost-wax approach to monodisperse colloids and their crystals. Science 2001, 291 (5503), 453-457.
    16. Fowler, C. E.; Khushalani, D.; Mann, S., Interfacial synthesis of hollow microspheres of mesostructured silica. Chemical Communications 2001, (19), 2028-2029.
    17. Huo, Q.; Feng, J.; Schüth, F.; Stucky, G. D., Preparation of hard mesoporous silica spheres. Chemistry of Materials 1997, 9 (1), 14-17.
    18. Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J., Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 1999, 398 (6724), 223-226.
    19. Fowler, C.; Khushalani, D.; Lebeau, B.; Mann, S., Nanoscale materials with mesostructured interiors. Advanced Materials 2001, 13 (9), 649-652.
    20. Jin, H.; Wang, L.; Bing, N., Mesoporous silica helical ribbon and nanotube-within-a-nanotube synthesized by sol–gel self-assembly. Materials letters 2011, 65 (2), 233-235.
    21. Fan, H.; Reed, S.; Baer, T.; Schunk, R.; López, G. P.; Brinker, C. J., Hierarchically structured functional porous silica and composite produced by evaporation-induced self-assembly. Microporous and mesoporous materials 2001, 44, 625-637.
    22. Brinker, C. J.; Scherer, G. W., Sol→ gel→ glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids 1985, 70 (3), 301-322.
    23. Giannelis, E. P.; Krishnamoorti, R.; Manias, E., Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In Polymers in confined environments, Springer: 1999; pp 107-147.
    24. Sheldon, R. A.; Wallau, M.; Arends, I. W.; Schuchardt, U., Heterogeneous catalysts for liquid-phase oxidations: philosophers' stones or Trojan horses? Accounts of Chemical Research 1998, 31 (8), 485-493.
    25. Voigt, A.; Murugavel, R.; Montero, M. L.; Wessel, H.; Liu, F. Q.; Roesky, H. W.; Usón, I.; Albers, T.; Parisini, E., Soluble molecular titanosilicates. Angewandte Chemie International Edition in English 1997, 36 (9), 1001-1003.
    26. Murugavel, R.; Roesky, H. W., Titanosilicates: recent developments in synthesis and use as oxidation catalysts. Angewandte Chemie International Edition in English 1997, 36 (5), 477-479.
    27. Clerici, M.; Bellussi, G.; Romano, U., Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis 1991, 129 (1), 159-167.
    28. Dartt, C.; Khouw, C.; Li, H.-X.; Davis, M., Synthesis and physicochemical properties of zeolites containing framework titanium. Microporous Materials 1994, 2 (5), 425-437.
    29. Van der Waal, J.; Kooyman, P.; Jansen, J.; Van Bekkum, H., Synthesis and characterization of aluminum-free zeolite titanium beta using di (cyclohexylmethyl) dimethylammonium as a new and selective template. Microporous and mesoporous materials 1998, 25 (1-3), 43-57.
    30. Corma, A.; Fornes, V.; Navarro, M.; Perezpariente, J., Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of Catalysis 1994, 148 (2), 569-574.
    31. Mokaya, R.; Jones, W.; Luan, Z.; Alba, M. D.; Klinowski, J., Acidity and catalytic activity of the mesoporous aluminosilicate molecular sieve MCM-41. Catalysis letters 1996, 37 (1-2), 113-120.
    32. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S., Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave− hydrothermal conditions. Chemistry of materials 2001, 13 (2), 552-557.
    33. Rolison, D. R., Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science 2003, 299 (5613), 1698-1701.
    34. Garcia, F. A.; Silva, J. C.; de Macedo, J. L.; Dias, J. A.; Dias, S. C.; Geraldo Filho, N., Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous and mesoporous materials 2008, 113 (1-3), 562-574.
    35. Plabst, M.; McCusker, L. B.; Bein, T., Exceptional ion-exchange selectivity in a flexible open framework lanthanum (III) tetrakisphosphonate. Journal of the American Chemical Society 2009, 131 (50), 18112-18118.
    36. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of catalysis 1989, 115 (2), 301-309.
    37. Nares, R.; Ramirez, J.; Gutiérrez-Alejandre, A.; Louis, C.; Klimova, T., Ni/Hβ-zeolite catalysts prepared by deposition− precipitation. The Journal of Physical Chemistry B 2002, 106 (51), 13287-13293.
    38. Chi, Y.; Chou, T.-Y.; Wang, Y.-J.; Huang, S.-F.; Carty, A. J.; Scoles, L.; Udachin, K. A.; Peng, S.-M.; Lee, G.-H., Synthesis and characterization of fluorinated aminoalkoxide and iminoalkoxide gallium complexes: Application in chemical vapor deposition of Ga2O3 thin films. Organometallics 2004, 23 (1), 95-103.
    39. Melander, W.; Horváth, C., Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Archives of biochemistry and biophysics 1977, 183 (1), 200-215.
    40. Sadeghi, R.; Jahani, F., Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. The Journal of Physical Chemistry B 2012, 116 (17), 5234-5241.
    41. Dumetz, A. C.; Snellinger‐O'Brien, A. M.; Kaler, E. W.; Lenhoff, A. M., Patterns of protein–protein interactions in salt solutions and implications for protein crystallization. Protein Science 2007, 16 (9), 1867-1877.
    42. Hyde, A. M.; Zultanski, S. L.; Waldman, J. H.; Zhong, Y.-L.; Shevlin, M.; Peng, F., General principles and strategies for salting-out informed by the Hofmeister series. Organic Process Research & Development 2017, 21 (9), 1355-1370.
    43. Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F., The pore structure of phosphoaluminate cement. 2012.
    44. Vimonses, V.; Lei, S.; Jin, B.; Chow, C. W.; Saint, C., Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal 2009, 148 (2-3), 354-364.
    45. Freundlich, H., Über die adsorption in lösungen. Zeitschrift für physikalische Chemie 1907, 57 (1), 385-470.
    46. Ho, Y.-S.; McKay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research 2000, 34 (3), 735-742.
    47. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society 1918, 40 (9), 1361-1403.
    48. Lagergren, S., About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1-39.
    49. Pashley, D. H., Dynamics of the pulpo-dentin complex. Critical Reviews in Oral Biology & Medicine 1996, 7 (2), 104-133.
    50. Hypersensitivity, C. A. B. o. D., Consensus-based recommendations for the diagnosis and management of dentin hypersensitivity. Journal (Canadian Dental Association) 2003, 69 (4), 221.
    51. Orchardson, R.; Gillam, D. G., Managing dentin hypersensitivity. The Journal of the American Dental Association 2006, 137 (7), 990-998.
    52. won Kim, J.; Park, J.-C., Dentin hypersensitivity and emerging concepts for treatments. Journal of Oral Biosciences 2017, 59 (4), 211-217.
    53. Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bai, Y.; Zhao, S.; Feng, J., The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering 2015, 23, 464-473.
    54. Brännström, M., Dentin sensitivity and aspiration of odontoblasts. The Journal of the American Dental Association 1963, 66 (3), 366-370.
    55. Greenhill, J. D.; Pashley, D. H., The effects of desensitizing agents on the hydraulic conductance of human dentin in vitro. Journal of Dental Research 1981, 60 (3), 686-698.
    56. Suge, T.; Ishikawa, K.; Kawasaki, A.; Yoshiyama, M.; Asaoka, K.; Ebisu, S., Duration of dentinal tubule occlusion formed by calcium phosphate precipitation method: in vitro evaluation using synthetic saliva. Journal of Dental Research 1995, 74 (10), 1709-1714.
    57. Clark, D.; Hanley, J.; Geoghegan, S.; Vinet, D., The effectiveness of a fluoride varnish and a desensitizing toothpaste in treating dentinal hypersensitivity. Journal of periodontal research 1985, 20 (2), 212-219.
    58. Schlueter, N.; Hardt, M.; Lussi, A.; Engelmann, F.; Klimek, J.; Ganss, C., Tin‐containing fluoride solutions as anti‐erosive agents in enamel: an in vitro tin‐uptake, tissue‐loss, and scanning electron micrograph study. European journal of oral sciences 2009, 117 (4), 427-434.
    59. Chiang, Y.-C.; Lin, H.-P.; Chang, H.-H.; Cheng, Y.-W.; Tang, H.-Y.; Yen, W.-C.; Lin, P.-Y.; Chang, K.-W.; Lin, C.-P., A mesoporous silica biomaterial for dental biomimetic crystallization. ACS nano 2014, 8 (12), 12502-12513.
    60. Cloutier, D.; Watson, A. K., Growth and regeneration of field horsetail (Equisetum arvense). Weed Science 1985, 358-365.
    61. Tyler, V., Ginger. The Honest Herbal, 3rd ed. New York, Pharmaceutical Products Press: 1993.
    62. Featherstone, J.; Lussi, A., Understanding the chemistry of dental erosion. In Dental erosion, Karger Publishers: 2006; Vol. 20, pp 66-76.
    63. Hong, H.-J.; Ryu, J.; Park, I.-S.; Ryu, T.; Chung, K.-S.; Kim, B.-G., Investigation of the strontium (Sr (II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. Journal of environmental management 2016, 165, 263-270.
    64. Horwitz, E. P.; Dietz, M. L.; Fisher, D. E., SREX: a newprocess for the extraction and recovery of strontium from acidic nuclear waste streams. Solvent Extraction and Ion Exchange 1991, 9 (1), 1-25.
    65. Hwang, E.-D.; Lee, K.-W.; Choo, K.-H.; Choi, S.-J.; Kim, S.-H.; Yoon, C.-H.; Lee, C.-H., Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater. Desalination 2002, 147 (1-3), 289-294.
    66. 張以潔, 氧化矽孔洞材料與金屬矽酸鹽複合材料之合成與應用. 成功大學化學系學位論文 2017, (2017 年), 1-92.
    67. Ho, Y.-S., Review of second-order models for adsorption systems. Journal of hazardous materials 2006, 136 (3), 681-689.
    68. Bhattacharya, A.; Naiya, T.; Mandal, S.; Das, S., Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chemical engineering journal 2008, 137 (3), 529-541.
    69. Yu, Q.; Xia, D.; Li, H.; Ke, L.; Wang, Y.; Wang, H.; Zheng, Y.; Li, Q., Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues. RSC advances 2016, 6 (91), 88373-88381.
    70. Voo, W.-P.; Ooi, C.-W.; Islam, A.; Tey, B.-T.; Chan, E.-S., Calcium alginate hydrogel beads with high stiffness and extended dissolution behaviour. European Polymer Journal 2016, 75, 343-353.

    下載圖示 校內:2025-08-24公開
    校外:2025-08-31公開
    QR CODE