簡易檢索 / 詳目顯示

研究生: 黃敬恩
Huang, Jing-En
論文名稱: 氧化石墨烯奈米通道薄膜之離子熱電響應研究
Investigation of Ionic Thermoelectric Response in Graphene Oxide Nanochannel Membranes
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 氧化石墨烯離子熱電轉換席貝克係數奈米通道索爾特效應溫度依賴性離子電遷移熱滲透
外文關鍵詞: Graphene oxide, Ionic-thermoelectric mechanism, Seebeck coefficient, Nanochannel, Soret effect, Temperature-dependent ion electromigration, Thermo-osmosis
相關次數: 點閱:151下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多數的固態熱電材料通常無法應用在低溫的廢熱回收,本研究以氧化石墨烯奈米通道薄膜結合電解液提供一低溫廢熱熱電轉換的可能性,並探討通道內溫度差驅動離子傳輸的各種效應,對於未來液態離子熱電材料的應用與材料的選擇提供一些基礎的資訊。本研究結合氧化石墨烯薄膜與電解溶液,透過氧化石墨烯奈米通道內之電雙層重疊建構出離子選擇性通道,在非均勻溫度場作用下,研究系統的熱電響應,即席貝克係數。本研究使用五種不同濃度的氯化鉀溶液進行氧化石墨烯奈米通道熱電響應的探討,結果顯示離子熱電響應隨著氯化鉀濃度降低而增大,當氯化鉀濃度為10-4 M時,可獲得最高的席貝克係數-0.69 mV/K。關於氧化石墨烯奈米通道內的離子熱電響應機制,本研究認為有三種溫度差驅動離子傳輸效應同時作用於其中,分別為「索爾特效應」、「熱滲透」及「溫度依賴性離子電遷移」,根據實驗與數值模擬分析,可發現傳統的「索爾特效應」及非滑移的「熱滲透」效應皆遠小於「溫度依賴性離子電遷移」效應,因此確定了奈米通道內的離子熱電響應主要是由「溫度依賴性離子電遷移」效應所主導,此效應隨著電解液濃度降低而顯著提升。此研究結果將有助於未來二維材料應用於低階熱能離子熱電轉換之發展。

    In this study, a graphene oxide membrane is applied to the thermoelectric conversion of waste heat at a low temperature. A KCl solution is combined with the graphene oxide nanochannel membrane, and the best Seebeck coefficient of -0.69 mV/K is obtained at a solution concentration of 10-4 M KCl. The thermoelectric response of the graphene oxide nanochannels was studied at five different concentrations of KCl solution under a non-uniform temperature field. The results show that the ionic thermoelectric response increased with the decreases in the KCl concentration. Three ion thermoelectric mechanisms acting on the nanochannel were proposed: "the Soret effect," "thermo-osmosis," and "temperature-dependent ion electromigration." According to an analysis of the experimental results, it was found that temperature dependent ion electromigration was dominant in the nanochannel, and its effect was increased significantly with decreases in the KCl solution concentration.

    中文摘要II 內容目錄XII 表目錄XIV 圖目錄XV 縮寫說明XIX 第1章 緒論1 1.1 簡介1 1.2 文獻回顧5 1.3研究動機與目的14 第2章 原理15 2.1 熱電效應 (Thermoelectric effect)15 2.2 電雙層 (Electric double layer)20 2.3 電導度與離子選擇性28 2.4 奈米通道下的熱電效應30 第3章 實驗材料與方法38 3.1 實驗儀器38 3.2 實驗材料45 3.3 奈米通道薄膜製作47 3.4 材料分析48 3.5 實驗材料製作49 3.6 實驗裝置製作51 3.7 實驗系統製作53 第4章 結果與討論58 4.1 氧化石墨烯薄膜鑑定分析58 4.2 氧化石墨烯薄膜通道電性量測60 4.3 氧化石墨烯薄膜席貝克係數量測63 4.4 實驗結果分析與討論67 4.5 實驗與模擬結果討論73 第5章 結論與未來展望78 5.1 結論78 5.2 未來展望81 參考文獻82

    [1] 台灣電力公司,發購電量結構,(2020).
    [2] Minnich, A., M. S. Dresselhaus, Z. Ren and G. Chen. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science 2(5), 466-479,(2009).
    [3] Forman, C., I. K. Muritala, R. Pardemann and B. Meyer. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 57, 1568-1579,(2016).
    [4] Olabi, A., K. Elsaid, E. T. Sayed, M. S. Mahmoud, T. Wilberforce, R. J. Hassiba and M. A. Abdelkareem. Application of nanofluids for enhanced waste heat recovery: a review. Nano Energy, 105871,(2021).
    [5] Li, T., X. Zhang, S. D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen and J. Dai. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature materials 18(6), 608-613,(2019).
    [6] Han, C.-G., X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng and G. Chen. Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091-1098,(2020).
    [7] Kim, T., J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang and Y. H. Kim. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy 31, 160-167,(2017).
    [8] He, X., H. Cheng, S. Yue and J. Ouyang. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties. Journal of Materials Chemistry A 8(21), 10813-10821,(2020).
    [9] Wu, X., N. Gao, H. Jia and Y. Wang. Thermoelectric Converters Based on Ionic Conductors. Chemistry–An Asian Journal 16(2), 129-141,(2021).
    [10] Yang, P., K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng and J. Zhou. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angewandte Chemie 128(39), 12229-12232,(2016).
    [11] 張洪維. 壓力驅動流動電流於氧化石墨烯奈米通道之研究. 成功大學工程科學系學位論文, 1-65,(2019).
    [12] 黃偉豪. 二維材料奈米管道薄膜應用於滲透能源轉換之探討. 成功大學工程科學系學位論文, 1-84,(2020).
    [13] Geim, A. K. and K. S. Novoselov The rise of graphene. Nanoscience and Technology: A Collection of Reviews from Nature Journals. World Scientific: 11-19,(2010).
    [14] Hummers Jr, W. S. and R. E. Offeman. Preparation of graphitic oxide. Journal of The Electrochemical Society 80(6), 1339-1339,(1958).
    [15] Yu, H., B. Zhang, C. Bulin, R. Li and R. Xing. High-efficient synthesis of graphene oxide based on improved hummers method. Scientific reports 6(1), 1-7,(2016).
    [16] Han, Y., Z. Xu and C. Gao. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials 23(29), 3693-3700,(2013).
    [17] Hung, W.-S., Q.-F. An, M. De Guzman, H.-Y. Lin, S.-H. Huang, W.-R. Liu, C.-C. Hu, K.-R. Lee and J.-Y. Lai. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 68, 670-677,(2014).
    [18] Tsou, C.-H., Q.-F. An, S.-C. Lo, M. De Guzman, W.-S. Hung, C.-C. Hu, K.-R. Lee and J.-Y. Lai. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science 477, 93-100,(2015).
    [19] Jia, Z. and Y. Wang. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. Journal of Materials Chemistry A 3(8), 4405-4412,(2015).
    [20] Hegab, H. M. and L. Zou. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science 484, 95-106,(2015).
    [21] Huang, J.-Q., T.-Z. Zhuang, Q. Zhang, H.-J. Peng, C.-M. Chen and F. Wei. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS nano 9(3), 3002-3011,(2015).
    [22] Elimelech, M., W. H. Chen and J. J. Waypa. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination 95(3), 269-286,(1994).
    [23] Xu, Y. and B. Xu. An Integrated Glass Nanofluidic Device Enabling In‐situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure‐Driven Flow Conditions. Small 11(46), 6165-6171,(2015).
    [24] Fu, L., L. Joly and S. Merabia. Giant thermoelectric response of nanofluidic systems driven by water excess enthalpy. Physical review letters 123(13), 138001,(2019).
    [25] Fu, L., S. Merabia and L. Joly. What controls thermo-osmosis? Molecular simulations show the critical role of interfacial hydrodynamics. Physical review letters 119(21), 214501,(2017).
    [26] Nolas, G. S., J. Sharp and J. Goldsmid (2013). Thermoelectrics: basic principles and new materials developments, Springer Science & Business Media.
    [27] Rowe, D. M. (2018). Thermoelectrics handbook: macro to nano, CRC press.
    [28] Schoch, R. B., J. Han and P. Renaud. Transport phenomena in nanofluidics. Reviews of modern physics 80(3), 839,(2008).
    [29] Zhang, W., Q. Wang, M. Zeng and C. Zhao. Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries. International Journal of Heat and Mass Transfer 143, 118569,(2019).
    [30] Konkena, B. and S. Vasudevan. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements. The journal of physical chemistry letters 3(7), 867-872,(2012).
    [31] Stein, D., M. Kruithof and C. Dekker. Surface-charge-governed ion transport in nanofluidic channels. Physical review letters 93(3), 035901,(2004).
    [32] Würger, A. Thermal non-equilibrium transport in colloids. Reports on Progress in Physics 73(12), 126601,(2010).
    [33] Hsu, J.-P., Y.-H. Tai, L.-H. Yeh and S. Tseng. Importance of temperature effect on the electrophoretic behavior of charge-regulated particles. Langmuir 28(1), 1013-1019,(2012).
    [34] Hsu, C., T.-W. Lo, D.-J. Lee and J.-P. Hsu. Electrophoresis of a charge-regulated zwitterionic particle: influence of temperature and bulk salt concentration. Langmuir 29(7), 2427-2433,(2013).
    [35] Debethune, A., T. Licht and N. Swendeman. The temperature coefficients of electrode potentials: the isothermal and thermal coefficients—the standard ionic entropy of electrochemical transport of the hydrogen ion. Journal of The Electrochemical Society 106(7), 616,(1959).
    [36] Hu, X., Y. Yu, W. Hou, J. Zhou and L. Song. Effects of particle size and pH value on the hydrophilicity of graphene oxide. Applied Surface Science 273, 118-121,(2013).
    [37] Chih-Chang Chang , W.-H. H., Jing-En Huang ,Ruey-Jen Yang. Investigation of Thermoelectric Response in Graphene Oxide Nanochannels.(Unpublished).
    [38] Zhao, D., A. Würger and X. Crispin. Ionic thermoelectric materials and devices. Journal of Energy Chemistry,(2021).
    [39] Dietzel, M. and S. Hardt. Thermoelectricity in confined liquid electrolytes. Physical review letters 116(22), 225901,(2016).
    [40] Chen, K., L. Yao and B. Su. Bionic thermoelectric response with nanochannels. Journal of The Electrochemical Society 141(21), 8608-8615,(2019).

    下載圖示 校內:2023-09-02公開
    校外:2023-09-02公開
    QR CODE