簡易檢索 / 詳目顯示

研究生: 林弘恆
Lin, Hong-Hen
論文名稱: 基於Lambda架構之語義物聯網開發及實現
The development and implementation of Lambda architecture based Semantic Web of Things
指導教授: 楊中平
Young, Chung-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 59
中文關鍵詞: 物聯網物聯網網路語意物聯網Lambda架構
外文關鍵詞: IoT (Internet of Things), WoT(Web of Things), SWoT(Semantic Web of Things), Lambda architecture
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物聯網於現今的技術中日漸趨於成熟,在各領域上有明顯的進展,網路的進步也驅使資料的傳輸上更加地快速。然而在使用者和服務端對於即時性資料及非即時資料的傳輸上沒有明確地訊息傳輸,讓雙方可以互相地去明白彼此的意思。因此需要將現實生活上的知識結構轉化為雙方可了解資訊。本文利用Lambda架構的即時性,使資料能夠更明確地分流處理。我們建立Lambda物聯網語意平台,使得物聯網裝置再透過各自的物聯網語意,讓使用者明白傳遞之資訊,並且透過即時資訊和非即時資料分歧傳送增加了傳送資訊的效率。

    Internet of Things is becoming more and more mature in current technology, and there are obvious progress in every fields. The progress of the network has also driven the transmission of data more quickly. However, there is no clear message transmission between the user and the server for the transmission of the instantaneous data and the non- real-time data, so that both sections can understand each other's meanings. Therefore, it is necessary to transform the knowledge structure in real life into information that both sections can understand. This paper uses Lambda architecture to establish the Lambda SWoT platform, which enables the IoT devices to communicate their information through Internet of Things, so that users can understand the information transmitted and increase the efficiency of transmitting information through real-time messaging and non-real-time data divergence.

    Abstract I 摘要 II Acknowledgement III List of Figures VI List of Tables VII Abbreviation VIII Chapter 1. Introduction 1 1.1 Overview 1 1.2 Motivation 1 1.3 Thesis Organization 3 Chapter 2. Related Work 4 2.1 Web of things 4 2.2 Semantic web 6 2.3 Data processing schema 8 2.4 Other works 10 2.4.1 Iotivity 10 2.4.2 MQTT 11 2.4.3 Ontology 11 Chapter 3. System architecture 13 3.1 Physical phase 14 3.2 Allocation phase 15 3.3 Processing phase 17 3.4 Semantic phase 19 3.5 Application phase 21 3.6 Data type and data storage 22 Chapter 4. Implementation 26 4.1 Overall Configuration 26 4.2 Data Flow Design 28 4.3 Physical stage 30 4.3.1 Output control data flow 30 4.3.2 Input non-real-time data flow 31 4.3.3 Input real-time data flow 32 4.4 Allocation stage 33 4.5 Processing stage 34 4.5.1 Topology 34 4.5.2 Contents of spouts and bolts 35 4.6 Semantic stage 37 4.7 Application stage 38 Chapter 5. Experiment results 40 5.1 Experimental data collection 40 5.2 Transaction successful rate 40 5.3 Transaction latency time comparison 41 5.3.1 At 2 bytes 42 5.3.2 At 4 bytes 42 5.3.3 At 8 bytes 43 5.3.4 At 16 bytes 43 5.3.5 At 32 bytes 44 5.3.6 At 64 bytes 44 5.3.7 At 128 bytes 45 5.3.8 At 256 bytes 45 5.3.9 At 512 bytes 46 5.3.10 At 1k bytes 46 5.3.11 At 2k bytes 47 5.3.12 At 4k bytes 47 5.3.13 At 8k bytes 48 5.3.14 At 16k bytes 48 5.3.15 At 32k bytes 49 5.3.16 At 64k bytes 49 5.3.17 At 128k bytes 50 5.3.18 At 256k bytes 50 5.3.19 At 512k bytes 51 5.3.20 At 1m bytes 51 5.4 Overall discussion 52 Chapter 6. Conclusion 53 6.1 Conclusion 53 6.2 Future work 54 Reference 55

    [1] D. Guinard, V. Trifa, F. Mattern, E. Wilde, "From the internet of things to the web of things: Resource-oriented architecture and best practices" in Architecting the Internet of Things, New York, NY USA:Springer, pp. 97-129, 2011.
    [2] O. H. Marita, “Interoperability at the Application Layer in the Internet of Things,” Master’s thesis, Norwegian University of Science and Technology, Department of Telematics, 2015.
    [3] Lambda Architecture [online] Available: http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
    [4] R. Tabish, A. Ghaleb, R. Hussein, F. Touati, A. Ben Mnaouer, L. Khriji, M. Rasid, "A 3g/wifi-enabled 6lowpan-based u-healthcare system for ubiquitous real-time monitoring and data logging", Biomedical Engineering (MECBME) 2014 Middle East Conference on, pp. 277-280, Feb 2014.
    [5] D. Ballari, M. Wachowicz, M. A. Manso, "Metadata behind the interoperability of wireless sensor network", Sensors, vol. 9, pp. 3635-3651, 2009.
    [6] M. Villari, A. Celesti, M. Fazio, A. Puliafito, "Alljoyn lambda: An architecture for the management of smart environments in IoT", Proc. Int. Conf. Smart Comput. Workshops, pp. 9-14, Nov. 2014.
    [7] Hiroki Takeuchi, "Towards Wisdom Web of Things Platform Architecture Review and Analysis" Institute of Computer Science and Information Engineering: July, 2018.
    [8] J. Hui and D. Culler. Extending IP to Low-Power, wireless personal area networks. Internet Computing, IEEE, 12(4):37–45, 2008
    [9] A. Kansal, S. Nath, J. Liu, F. Zhao, "SenseWeb: An infrastructure for shared sensing", IEEE MultiMedia, vol. 14, no. 4, pp. 8-13, 2007.
    [10] V. Stirbu. Towards a RESTful Plug and Play Experience in the Web of Things. In Proc. ICSC, Los Alamitos, CA, USA, 2008.
    [11] D. Zeng, S. Guo, Z. Cheng, "The Web of Things: A survey", J. Commun., vol. 6, no. 6, pp. 424-438, 2011.
    [12] Kotis, K., and Katasonov, A. 2012. Semantic Interoperability on the Web of Things: The Smart Gateway Framework. In Proceedings of the Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2012), Palermo, 2012
    [13] P.P. Ray A Survey of IoT Cloud Platforms EAI Endorsed Transactions on Cloud Systems, ICST (2016)
    [14] D. Raggett, "The Web of Things: Challenges and opportunities", IEEE Comput., vol. 48, no. 5, pp. 26-32, May 2015.
    [15] R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, M. Rossi, "Secure communication for smart IoT Objects: Protocol stacks use cases and practical examples", Proc. IEEE IoT-SoS, pp. 1-7, 2012.
    [16] A. Hakiri, P. Berthou, A. Gokhale, S. Abdellatif, "Publish/subscribe-enabled software defined networking for efficient and scalable IoT communications", IEEE Commun. Mag., vol. 53, no. 9, pp. 48-54, Sep. 2015.
    [17] A. Sheth, C. Henson, S. S. Sahoo, "Semantic sensor web", IEEE Internet Comput., vol. 12, no. 4, pp. 78-83, Jul./Aug. 2008.
    [18] A. Sheth, "Internet of Things to smart IoT through semantic cognitive and perceptual computing", IEEE Intell. Syst., vol. 31, no. 2, pp. 108-112, Mar. 2016.
    [19] P. Desai, A. Sheth, P. Anantharam, "Semantic gateway as a service architecture for IoT interoperability", arXiv preprint arXiv:1410.4977, 2014.
    [20] M. Compton et al., "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", J. Web Semantics, vol. 17, pp. 25-32, 2012.
    [21] M. Stocker, M. Rönkkö, M. Kolehmainen, "Making sense of sensor data using ontology: A discussion for road vehicle classification", Proc. Int. Congr. iEMSs, pp. 1-8, 2012.
    [22] F. Ganz, P. Barnaghi, F. Carrez, "Automated semantic knowledge acquisition from sensor data", 2014.
    [23] I. Horrocks, B. Parsia, P. Patel-Schneider, J. Hendler, "Semantic web architecture: Stack or two towers?", Proc. Principles and Practice of Semantic Web Reasoning (PPSWR 2005), pp. 37-41, Sept 2005.
    [24] A. Pavlo, A. Rasin, S. Madden, M. Stonebraker, D. De Witt, E. Paulson, L. Shrinivas, D. J. Abadi, "A Comparison of Approaches to Large-Scale Data Analysis", SIGMOD, June, 2009.
    [25] O. Carvalho, E. Roloff, P.O.A. Navaux, "A Distributed Stream Processing based Architecture for IoT Smart Grids Monitoring", Companion Proceedings of the 10th International Conference on Utility and Cloud Computing - UCC '17 Companion, pp. 9-14, 2017.
    [26] N. Marz, Big Data: Principles and Best Practices of Scalable Real-Time Data Systems, O'Reilly Media, 2013.
    [27] Applying the Kappa architecture in the telco industry. [online] Available: https://www.oreilly.com/ideas/applying-the-kappa-architecture-in-the-telco-industry.
    [28] Iotivity [online] Available: https://iotivity.org/
    [29] MQTT (Message Queuing Telemetry Transport) [online] Available: http://mqtt.org/.
    [30] J. Allen, W. de Beaumont, L. Galescu, J. Orfan, M. Swift, C.M. Teng, "Automatically deriving event ontologies for a commonsense knowledge base", Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013), March 19–22.
    [31] W. Shi, S. Dustdar, "The promise of edge computing", Computer, vol. 49, no. 5, pp. 78-81, May 2016.
    [32] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, "Edge computing: Vision and challenges", IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.
    [33] Ta-Shma P., Akbar A., Gerson-Golan G., Hadash G., Carrez F., Moessner K.
    An ingestion and analytics architecture for IoT applied to smart city use cases
    IEEE Internet of Things J. (2017)
    [34] Apache Kafka, [online] Available: https://kafka.apache.org/
    [35] M. Villari, A. Celesti, M. Fazio, A. Puliafito, "Alljoyn lambda: An architecture for the management of smart environments in iot", 2014 International Conference on Smart Computing Workshops (SMARTCOMP Workshops), pp. 9-14, Nov 2014..
    [36] Apache Storm, [online] Available: http://storm.apache.org/.
    [37] T. Rattanasawad, K. R. Saikaew, M. Buranarach, T. Supnithi, "A Review and Comparison of Rule Languages and Rule-based Inference Engines for the Semantic Web", Proceedings of the IEEE International Computer Science and Engineering Conference (ICSEC), pp. 1-6, September, 2013.
    [38] Apache jena [online] Available: https://jena.apache.org
    [39] S. Madakam, R. Ramaswamy, S. Tripathi, "Internet of Things (IoT): A literature review", J. Comput. Commun., vol. 3, no. 5, pp. 164-173, 2015.
    [40] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, J. Alonso-Zarate, "A survey on application layer protocols for the internet of things", Transaction on IoT and Cloud Computing, vol. 3, no. 1, pp. 11-17, 2015.
    [41] OCF_Resource_Type_Specification, [online] Available: https://openconnectivity.org/developer/specifications
    [42] C. W. Wu, F. J. Lin, C. H. Wang, N. Chang, "OneM2M-based IoT protocol integration", 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 252-257, 2017.

    無法下載圖示 校內:2022-09-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE