簡易檢索 / 詳目顯示

研究生: 張博
Chang, Po
論文名稱: 利用光致螢光技術探究甲基氨碘化鉛鈣鈦礦於不同環境條件下之光物理
Using in-situ photoluminescence measurement to investigate photophysics of organometallic halide CH3NH3PbI3 under different environmental conditions
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 62
中文關鍵詞: 鈣鈦礦氣相沉積法光致螢光時間解析光致螢光氧氣
外文關鍵詞: CH3NH3PbI3 perovskite, vapor deposition, photoluminescence, time-resolved photoluminescence, oxygen
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討使用兩階段的沉積法成長CH3NH3PbI3微米晶體,成長完的晶體使用掃描式電子顯微鏡觀測其形貌。光譜儀用來監測CH3NH3PbI3其光致螢光於雷射持續照射下的變化情形。穿透光譜用來檢測CH3NH3PbI3照光前與照光後是否有任何材料結構上的變化。
    我們發現剛成長出來的CH3NH3PbI3其螢光波峰波長位置約位在770 nm奈米處,且在一般空氣施以高強度的雷射光照射(634 mW cm-2),它的光致螢光強度有越來越弱的趨勢。然而於有氧無水氣的環境下施以低強度雷射光照射(210 mW cm-2),它的光致螢光強度卻漸升之後又漸弱,在同樣的雷射功率下,我們在無氧無水氣的環境下重複同樣的實驗,發現光致螢光強度沒有漸升的現象。
    最後於有氧無水氣與無氧無水氣的環境執行時間解析發光光譜的量測,發現氧氣對於鈣鈦礦照光之後的反應有著非常顯著的影響,於內文中將有詳細的介紹,藉由本研究,我們希望能對鈣鈦礦於不同環境條件下(照光強度的強弱或氧氣的有無)產生的光反應有更深的了解,並期望此對製作穩定的鈣鈦礦元件有幫助。

    A two-step crystal growth method was introduced to prepare high optical quality perovskite CH3NH3PbI3 microcrystals. The morphologies of these microcrystals were observed by scanning electron microscopy (SEM). To monitor the luminescence evolution of CH3NH3PbI3 microcrystals with laser irradiation under different ambient conditions, in-situ photoluminescence (PL) and time-resolved PL (TRPL) systems were utilized. An optical absorption spectra measurement was employed to study the structure/phase changes of microcrystals after laser irradiation.
    We found the PL peak emission wavelength of as-prepared CH3NH3PbI3 microcrystals was centered at 770 nm. Under high power density (634 mW cm-2) irradiation in the air, the PL peak intensity of CH3NH3PbI3 microcrystals gradually decreased. However, under low power density (210 mW cm-2) irradiation in a relative low humidity environment with Oxygen, its PL peak intensity slowly increased first and then decreased eventually. We also conducted the controlled experiment, which was in a relative low humidity environment with no Oxygen, to verify the effect of Oxygen. The PL intensity shows a monotonically increases as a function of the measured time.
    Lastly, we compared the time-resolved photoluminescence (TRPL) results between two environments (with or without Oxygen). We found that Oxygen plays an important role in the light-induced reaction of CH3NH3PbI3 microcrystals. In this study, we hope to give an in-depth understanding on the light-induced reaction of CH3NH3PbI3 microcrystals. We also hope this study can help fabricate more stable perovskite device.

    Contents 摘要 I Abstract II 誌謝……………………………………………………………………………………….III Contents IV Lists of Tables VI Lists of Figures VII Chapter 1. Introduction 1 1.1 Preface 1 1.2 Motivation 6 Chapter 2. Background Theory 7 2.1 Perovskite Materials 7 2.1.1 Structural properties 7 2.1.2 Optical properties 10 2.2 Synthesis of hybrid perovskites 14 2.3 Photoluminescence 17 Chapter 3. Experiment Process and Measurement 22 3.1 Preparation of CH3NH3PbI3 Perovskite Microcrystals by Two Steps Method 22 3.1.1 Preparation of Lead Halide Microcrystals (First Step) 22 3.1.2 Preparation of CH3NH3PbI3 Perovskite (Second Step) 24 3.2 Morphology Analysis 26 3.2.1 Field Emission Scanning Electron Microscope 26 3.3 Photoluminescence Measurement 27 3.3.1 Principle 27 3.3.2 Measurement Instrument setup 29 3.4 Time-Resolved photoluminescence 31 3.5 Visible absorption spectra 32 3.6 Environment condition control system………………………………………………………33 Chapter 4. Experiment Results and Discussion 34 4.1 Analysis of MAPbI3 morphology and structure 34 4.1.1 Morphology of MAPbI3 crystals 34 4.1.2 MAPbI3 photoluminescence spectra 36 4.2 The degradation phenomenon of MAPbI3 in air 37 4.3 The products of MAPbI3 degradation 40 4.4 Is oxygen another key factor? 41 4.5 Is oxygen a double-edged sword? 45 4.5.1 PL characteristics in an envronment with oxygen and without humidity 45 4.5.2 PL characteristics in an environment without oxygen and humidity 50 Chapter 5. Conclusion and Future work 57 5.1 Conclusion 57 5.2 Future work 58 Reference 59

    1 B. O'Regan and M. Grätzel, Nature 353, 737 (1991).
    2 S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, and S. I. Seok, Science 356, 167 (2017).
    3 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).
    4 H. J. Snaith, The Journal of Physical Chemistry Letters 4, 3623 (2013).
    5 P. V. Kamat, The Journal of Physical Chemistry C 112, 18737 (2008).
    6 W. J. Yin, T. Shi, and Y. Yan, Advanced Materials 26, 4653 (2014).
    7 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
    8 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science 347, 967 (2015).
    9 J. Ding, S. Du, Y. Zhao, X. Zhang, Z. Zuo, H. Cui, X. Zhan, Y. Gu, and H. Sun, Journal of Materials Science 52, 276 (2017).
    10 Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, and H. Gao, Advanced Materials 28, 305 (2016).
    11 H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X-Y. Zhu, Nature Materials 14, 636 (2015).
    12 M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen, and D. Venkataraman, Journal of the American Chemical Society 137, 13130 (2015).
    13 J. A. Christians, P. A. M. Herrera, and P. V. Kamat, Journal of the American Chemical Society 137, 1530 (2015).
    14 M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nature Photonics 8, 506 (2014).
    15 A. Poglitsch and D. Weber, The Journal of Chemical Physics 87, 6373 (1987).
    16 T. Baikie, Y. Fang, Je. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, Journal of Materials Chemistry A 1, 5628 (2013).
    17 W. Kong, Z. Ye, Z. Qi, B. Zhang, M. Wang, A. Rahimi-Iman, and H. Wu, Physical Chemistry Chemical Physics 17, 16405 (2015).
    18 K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang, L. Li, and T. Wu, Physical Chemistry Chemical Physics 16, 22476 (2014).
    19 S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. Xiong, Advanced Optical Materials 2, 838 (2014).
    20 N. Kitazawa, Y. Watanabe, and Y. Nakamura, Journal of Materials Science 37, 3585 (2002).
    21 K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, Solid State Communications 127, 619 (2003).
    22 J. Liu, Y. Xue, Z. Wang, Z. Q. Xu, C. Zheng, B. Weber, J. Song, Y. Wang, Y. Lu, Y. Zhang, and Q. Bao, American Chemical Society Nano 10, 3536 (2016).
    23 L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L. W. Wang, A. Paul Alivisatos, and P. Yang, Science 349, 6255 (2015).
    24 V. D’Innocenzo, A. R. S. Kandada, M. D. Bastiani, M. Gandini, and A. Petrozza, Journal of the American Chemical Society 136, 17730 (2014).
    25 Y. Yuan, Q. Wang, Y. Shao, H. Lu, T. Li, A. Gruverman, and J. Huang, Advanced Energy Materials 6, 1501803 (2016).
    26 X. Fu, D. A. Jacobs, F. J. Beck, T. Duong, H. Shen, Catchpole, and T. P. White, Royal Society of Chemistry 18, 22557 (2016).
    27 M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
    28 D. B. Mitzi, M. T. Prikas, and K. Chondroudis, Chemistry of Materoals 11, 542 (1999).
    29 Q. Chen, H. Zhou, Z. Hong, L. Song, H. S. Duan, H. H Wang, Y. Liu, G. Li, and Y. Yang, Journal of the American Chemical Society 136, 622 (2014).
    30 Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Sajou, K. Inoue, Y. Narukawa, T. Mukai, and Sg. Fujita, Physica Status Solidi A 183, 41 (2001).
    31 G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nature Materials 13, 476 (2014).
    32 A. A. Mamun, T. T. Ava, H. J. Jeong, M. S. Jeongbc, and G. Namkoong, Physical Chemistry Chemical Physics 19, 9143 (2017).
    33 M. R. Tubbs, Physica Status Solidi B 49, 11 (1972).
    34 C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorganic Chemistry 52, 9019 (2013).
    35 A. Merdasa, M. Bag, Y. Tian, E. Kallman, A. Dobrovolsky, and I. G. Scheblykin, The Journal of Physical Chemistry 120, 10711 (2016).
    36 C. Barugkin, J. Cong, T. Duong, S. Rahman, H. T. Nguyen, D. Macdonald, T. P. White, and K. R. Catchpole, The Journal of Physical Chemistry Letters 6, 767 (2015).
    37 Y. Tian, M. Peter, E. Unger, M. Abdellah, K. Zheng, T. Pullerits, A. Yartsev, V. Sundstro¨m, and I. G. Scheblykin, Physical Chemistry Chemical Physics 17, 24978 (2015).
    38 J. F. Galisteo-Lopez, M. Anaya, M. E. Calvo, and H. Míguez, The Journal of Physical Chemistry Letters 6, 2200 (2015).
    39 W. J. Yina, T. Shi, and Y. Yan, Applied Physics Letters 104, 063903 (2014).
    40 G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
    41 Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, Journal of the American Chemical Society 136, 11610 (2014).
    42 N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, and H. J. Snaith, Acs Nano 8, 9815 (2014).
    43 L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, and C. Burda, Journal of the American Chemical Society 136, 12205 (2014).
    44 Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu, and Y. Yang, Nano Letters 14, 4158 (2014).
    45 S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Physical Review Applied 2, 034007 (2014).
    46 S. Chen, X. Wen, J. S. Yun, S. Huang, M. Green, N. J. Jeon, W. S. Yang, J. H. Noh, J. Seo, S. I. Seok, and A. Ho-Baillie, ACS Applied Materials and Interfaces 9, 6072 (2017).

    下載圖示 校內:2020-08-25公開
    校外:2020-08-25公開
    QR CODE