簡易檢索 / 詳目顯示

研究生: 謝宜寰
Hsieh, Yi-Huan
論文名稱: 經高溫氧化之添加鎢元素鉻薄膜磨潤性能研究
Tribological performance of chromium films with tungsten doping after high temperature oxidation treatment
指導教授: 蘇演良
Su, Yan-liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 117
中文關鍵詞: 機械性質氧化鎢氧化鉻非平衡磁控濺鍍
外文關鍵詞: Cr-O, mechanical properties, W-O, closed field unbalanced magnetron sputtering
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用非平衡磁控濺鍍系統,濺鍍Cr-W鍍膜於高速鋼、矽晶片、微鑽針及捨棄式刀具。主要目的為探討添加鎢元素之鉻薄膜於高溫氧化前後之機械性質、磨潤性質及切削性能。實驗主要分為三部分:第一部分探討鎢元素含量對於Cr-W鍍層機械性質的影響;第二部分探討600 ℃ 1小時氧化處理對Cr-W鍍層機械性質的影響;第三部分探討不同溫度及時間氧化處理對Cr-W鍍層機械性質的影響;最後選用較佳鍍層進行乾車削及微鑽孔試驗,以瞭解鍍膜披覆刀具之實際工作效能。
    由實驗結果可知,Cr-W鍍層於鎢靶電流為2.0 A時,鍍層擁有最高硬度值HK25g 1650及最佳耐磨耗性。Cr-W(2.0 A)鍍層經600 ℃ 1小時氧化處理後,硬度可提升至HK25g 1820以上,且耐磨耗性及附著性亦有顯著提升,此外氧化過後鍍層之摩擦係數有明顯的下降。而在不同溫度及時間之氧化處理,則以600 ℃2小時氧化之Cr-W(2.0 A)鍍層擁有最佳之耐磨耗性及附著性。由實際切削、鑽削實驗的結果得知,高溫氧化處理之Cr-W(2.0 A)鍍層能有效降低車刀及鑽針磨耗量,可降低車刀刀腹磨耗量71 %及微鑽針刀角磨耗量63 %。

    In this study, Cr-W coatings were deposited on JIS SKH51 disks, silicon wafers, micro-drills and indexable inserts by closed field unbalanced magnetron system. The main purpose of this study is to research the mechanical and tribological properties and cutting performance of the Cr-W coatings before and after high temperature oxidation. The experiment is divided into three stages. In first stage, the effect of tungsten content on the mechanical properties of the Cr-W coatings was investigated. In second stage, the effect of one hour oxidation treatment at 600 ℃ on the mechanical properties of the Cr-W coatings was investigated. In third stage, the effect of oxidation treatment at different temperature and duration on the mechanical properties of Cr-W coatings was investigated. Finally, the actual cutting performances of the optimal coatings were understood in the turning and micro-drilling tests.
    The results reveal that the highest hardness of HK25g 1650 and the best wear resistance were performed by the Cr-W coatings with the tungsten target current of 2.0 A. The hardness of Cr-W(2.0 A) coatings after 600 ℃ and one hour oxidation treatment increased to HK25g 1820. The wear resistance and adhesion performance of the Cr-W coatings improve apparently after oxidation. The coefficient of friction of Cr-W coatings after oxidation declines obviously. The best wear resistance and adhesion were performed for Cr-W(2.0 A) coatings after 600 ℃ and two hours oxidation treatment.
    In actually turning and micro-drilling tests, the wear on Cr-W(2.0 A) coatings deposited on inserts and drills with high temperature oxidation treatment can be reduced about 71 % and 63 %, respectively.

    授權書………………………………………………………………… Ⅰ 口試合格證明書……………………………………………………… Ⅱ 摘要…………………………………………………………………… Ⅲ Abstract……………………………………………………………… Ⅳ 誌謝…………………………………………………………………… Ⅴ 總目錄 ………………………………………………………………Ⅵ 表目錄 ………………………………………………………………Ⅹ 圖目錄 ………………………………………………………………ⅩⅡ 第一章 緒論…………………………………………………………1 1-1前言…………………………………………………… 1 1-2研究動機……………………………………………… 3 第二章 理論探討與文獻回顧………………………………………4 2-1薄膜成形……………………………………………… 4 2-1-1薄膜成形技術…………………………………… 4 2-1-2薄膜成形技術的用途…………………………… 4 2-1-3薄膜成形技術的種類…………………………… 5 2-2濺鍍理論…………….…………………………………7 2-2-1直流濺鍍原理…………………………………… 7 2-2-2磁控濺鍍………………………………………… 9 2-3磨耗機構原理………………………………………… 10 2-4氧化鉻、鎢及氧化鎢鍍膜介紹……………………… 13 2-4-1氧化鉻……………………………………………… 13 2-4-2鎢及氧鎢…………………………………………… 14 第三章 實驗方法與步驟……………………………………………16 3-1實驗目的……………………………………………… 16 3-2實驗流程……………………………………………… 16 3-3實驗方法與規劃……………………………………… 17 3-3-1 濺鍍參數與鍍膜安排……………………………17 3-3-2 實驗材料…………………………………………17 3-3-3 成分分析…………………………………………18 3-3-4 結構分析…………………………………………19 3-3-5 硬度試驗…………………………………………19 3-3-6 附著性試驗………………………………………19 3-3-7 磨耗實驗…………………………………………20 3-3-8 高溫氧化實驗……………………………………21 3-3-9 車削實驗…………………………………………21 3-3-10 鑽削實驗……………………………………… 22 3-3-11 表面、斷面和磨耗型態分析………………… 23 3-4 實驗設備…………………………………………… 23 第四章 Cr-W、Cr-W-O鍍膜實驗結果與討論………………………26 4-1 Cr-W鍍膜-鎢靶電流變化對鍍膜的影響…………… 26 4-1-1鍍膜基本性質…………………………………… 26 4-1-1-1鍍膜微結構…………………………………26 4-1-1-2鍍膜表面及斷面SEM觀察………………… 26 4-1-1-3鍍膜表面之粗糙度分析……………………27 4-1-1-4鍍膜膜厚及成分分析………………………27 4-1-1-5鍍膜硬度……………………………………27 4-1-1-6基材效應對於微硬度實驗影響探討………27 4-1-2鍍膜附著性……………………………………… 28 4-1-2-1壓痕試驗……………………………………28 4-1-2-2刮痕試驗……………………………………28 4-1-3鍍膜磨潤性質…………………………………… 29 4-1-3-1 Cr-W鍍膜與AISI 1045中碳鋼圓柱對磨…29 4-1-3-2 Cr-W鍍膜與AISI 52100鉻鋼球對磨…… 29 4-1-3-3磨耗機構……………………………………30 4-1-4小結……………………………………………… 30 4-2 600 ℃持溫1小時氧化對Cr-W鍍層的影響………… 31 4-2-1鍍膜基本性質…………………………………… 31 4-2-1-1鍍膜微結構…………………………………31 4-2-1-2鍍膜之表面及斷面SEM觀察……………… 31 4-2-1-3鍍膜之表面粗糙度分析……………………32 4-2-1-4鍍膜之顏色變化及成分分析………………32 4-2-1-5鍍膜硬度……………………………………33 4-2-1-6基材效應對於微硬度實驗影響探討………33 4-2-2鍍膜附著性……………………………………… 33 4-2-2-1壓痕試驗……………………………………33 4-2-2-2刮痕試驗……………………………………33 4-2-3鍍膜磨潤性質…………………………………… 34 4-2-3-1 600 ℃持溫1小時氧化Cr-W鍍層與 AISI 1045中碳鋼圓柱對磨……………… 34 4-2-3-2 600 ℃持溫1小時氧化Cr-W鍍層與 AISI 52100鉻鋼球對磨……………………35 4-2-4小結……………………………………………… 35 4-3不同溫度氧化W20鍍膜之實驗結果與討論(I)……… 35 4-3-1鍍膜基本性質…………………………………… 36 4-3-1-1鍍膜微結構…………………………………36 4-3-1-2鍍膜之表面及斷面SEM觀察……………… 36 4-3-1-3鍍膜之顏色變化及附著情形………………36 4-3-1-4鍍膜之表面粗糙度分析……………………37 4-3-1-5鍍膜成分分析………………………………38 4-3-1-6鍍膜硬度……………………………………38 4-3-2鍍膜附著性……………………………………… 38 4-3-2-1壓痕試驗……………………………………38 4-3-2-2刮痕試驗……………………………………39 4-3-3鍍膜磨潤性質…………………………………… 39 4-3-3-1不同溫度氧化W20鍍膜與 AISI 1045中碳鋼圓柱對磨…………………39 4-3-3-2不同溫度氧化W20鍍膜 與AISI 52100鉻鋼球對磨………………… 40 4-3-4小結……………………………………………… 40 4-4不同溫度氧化W20鍍膜之實驗結果與討論(II)………40 4-4-1鍍膜基本性質…………………………………… 41 4-4-1-1鍍膜微結構…………………………………41 4-4-1-2鍍膜之表面及斷面SEM觀察……………… 41 4-4-1-3鍍膜之顏色變化及附著情形………………41 4-4-1-4鍍膜之表面粗糙度分析……………………42 4-4-1-5鍍膜成分分析………………………………42 4-4-1-6鍍膜硬度……………………………………43 4-4-2鍍膜附著性……………………………………… 43 4-4-2-1壓痕試驗……………………………………43 4-4-2-2刮痕試驗……………………………………43 4-4-3鍍膜磨潤性質…………………………………… 44 4-4-3-1不同溫度氧化W20鍍膜與 AISI 1045中碳鋼圓柱對磨……………… 44 4-4-3-2不同溫度氧化W20鍍膜 與AISI 52100鉻鋼球對磨………………… 44 4-4-4小結……………………………………………… 45 4-5乾車削實驗…………………………………………… 46 4-6 PCB微鑽削實驗……………………………………… 47 第五章 結論與未來展望……………………………………………48 5-1結論…………………………………………………… 48 5-2未來展望……………………………………………… 49 第六章 參考文獻……………………………………………………50 作者簡歷………………………………………………………………116 著作權聲明……………………………………………………………117 表目錄 Table 3-1 Deposition parameters of Cr-W coatings…………54 Table 3-2 Chemical composition (wt. %) of AISI 1045 cylinder, JIS SKH51 disk and AISI 52100 ball…54 Table 3-3 SRV wear test parameters……………………………55 Table 3-4 Oxidation experimental detail for Cr-W coatings I………………………………………………55 Table 3-5 Oxidation experimental detail for Cr-W coatings II…………………………………………… 55 Table 3-6 Oxidation experimental detail for Cr-W coatings III……………………………………………56 Table 4-1 The elemental composition of Cr-W coatings……56 Table 4-2 The effects of indentation depth on the Knoop micro-hardness of the Cr-W coatings (JIS SKH51 disk)………………………………………56 Table 4-3 Indentation fracture level of Cr-W coatings… 57 Table 4-4 Scratch test results of Cr-W coatings………… 57 Table 4-5 Estimated Cr-W coatings adhesion properties by scratch test……………………………………………57 Table 4-6 The elemental composition of Cr-W coatings after oxidation treatment (600 ℃ 60 min)…… 58 Table 4-7 The effects of indentation depth on the Knoop micro-hardness of the Cr-W coatings after oxidation treatment (600 ℃ 60 min) (JIS SKH51 disk)…………………58 Table 4-8 Indentation fracture level of Cr-W coatings (after oxidation treatment 600 ℃ 60 min)…… 58 Table 4-9 Scratch test results about Cr-W coatings (after oxidation treatment 600℃ 60 min)………59 Table 4-10 Estimated Cr-W coatings adhesion properties by scratch test (after oxidation treatment 600 ℃ 60 min)……59 Table 4-11 EDS analysis result of Cr-W coatings after oxidation treatment (different temperature and duration) (JIS SKH51 disk)…………………………………… 60 Table 4-12 The effects of indentation depth on the Knoop micro-hardness test of the Cr-W coatings after oxidation treatment (different temperature and duration) (JIS SKH51 disk)…………………………………… 60 Table 4-13 Indentation fracture level of Cr-W coatings after oxidation treatment (different temperature and duration)………… 60 Table 4-14 Scratch test results of Cr-W coatings on JIS SKH51 disk after oxidation treatment (different temperature and duration)………… 61 Table 4-15 Estimated Cr-W coatings adhesion properties by scratch test Cr-W coated on JIS SKH51 disk after oxidation treatment (different temperature and duration)………… 61 Table 4-16 Color of Cr-W coatings after oxidation treatment (different temperature) (JIS SKH51 disk)…………………………………… 61 Table 4-17 EDS analysis result of Cr-W coatings after oxidation treatment (different temperature) (JIS SKH51 disk)…………………………………… 62 Table 4-18 The effects of indentation depth on the Knoop micro-hardness of the Cr-W coatings after oxidation treatment (different temperature) (JIS SKH51 disk)…… 62 Table 4-19 Indentation fracture level of Cr-W coatings after oxidation treatment (different temperature)……………………………62 Table 4-20 Scratch test results of Cr-W coatings after oxidation treatment (different temperature)…63 Table 4-21 Estimated Cr-W coatings adhesion properties by scratch test Cr-W coated on JIS SKH51 disk after oxidation treatment (different temperature)……………………………63 圖目錄 圖2-1 薄膜形成技術種類……………………………………………64 圖2-2 典型直流鍍膜系統構造示意圖… 65 圖2-3 輝光放電示意圖...………………………………………… 65 圖2-4 傳統磁控與非平衡磁控濺鍍示意圖…………………………66 圖2-5 由硬顆粒或突出強行在固體表面移動所致的磨粒磨耗 (Abrasion)示意圖……………………………………………66 圖2-6 由於固體被磨面受到流動或沖激液漿的機械作用造成材料 的沖蝕磨耗(Erosion)示意圖……………………………… 67 圖2-7 由於固體被磨材與對磨材之間相對運動產生局部鍵結 (Local Bonding)所致的黏著磨耗(Adhesion)示意圖…… 67 圖2-8 起因於周期性滾動或滑動產生的表面疲勞 (Surface Fatigue)示意圖………………………………… 67 圖2-9 Cr-O溫度與壓力關係圖………………………………………68 圖3-1 實驗流程………………………………………………………69 圖3-2 KD-550U封閉式非平衡磁控濺鍍系統(主腔體)…………… 70 圖3-3 KD-550U封閉式非平衡磁控濺鍍系統(控制系統)………… 70 圖3-4 KD-550U封閉式非平衡磁控濺鍍系統 (腔體內部構造示意圖)……………………………………… 71 圖3-5 壓痕破裂型態示意圖…………………………………………71 圖3-6 刮痕測試機台示意圖…………………………………………72 圖3-7 (a) SRV磨耗測試機 (b) 上試件夾具 (c) 下試件磨痕類型…………………………………………73 圖3-8 車刀磨耗型態及切削性能評估準則示意圖…………………74 圖3-9 PWB微鑽孔實驗示意圖 (a) 實驗架構示意圖 (b) 實驗參數……………………… 75 圖3-10 FR-4雙面板之單層疊構圖………………………………… 76 圖3-11 微鑽針磨耗評估準則……………………………………… 76 圖4-1 Cr-W鍍膜之XRD繞射圖……………………………………… 77 圖4-2 Cr-W鍍膜之表面與斷面SEM圖……………………………… 78 圖4-3 Cr-W鍍膜之表面粗糙度比較圖………………………………80 圖4-4 Cr-W鍍膜之元素含量與厚度圖 (EDS分析)…………………80 圖4-5 鎢含量與Cr-W鍍膜硬度的關係 (JIS SKH51基材)…………81 圖4-6 Cr-W鍍膜之刮痕深度及摩擦係數圖(40處)…………………81 圖4-7 Cr-W鍍膜之SRV線磨耗試驗結果 (12分鐘) (a) 50 N, (b) 100 N……………………………………… 82 圖4-8 Cr-W鍍膜之SRV點磨耗試驗結果 (2分鐘) (Load =10 N)…83 圖4-9 W20鍍膜表面磨痕形貌(與AISI 1045對磨-線磨) (時間:12 min ; Stroke:0.5 mm;Load:100 N)………84 圖4-10 AISI 1045圓柱表面磨痕形貌(與W20對磨-線磨) (時間:12 min ; Stroke:0.5 mm;Load:100 N)………85 圖4-11 600 ℃ 1小時氧化Cr-W鍍膜XRD繞射結果…………………86 圖4-12 600 ℃ 1小時氧化Cr-W鍍膜表面及斷面SEM圖……………87 圖4-13 原材及600 ℃ 1小時氧化Cr-W鍍膜之表面粗糙度比較圖 89 圖4-14 600 ℃ 1小時氧化Cr-W鍍膜之表面顏色觀察…………… 89 圖4-15 利用GDS分析不同鎢含量鍍膜之氧化深度(600 ℃ 1小時)90 圖4-16 原材及600 ℃ 1小時氧化Cr-W鍍膜硬度值……………… 90 圖4-17 原材及600 ℃ 1小時氧化Cr-W鍍膜之 刮痕摩擦係數圖(40 N)…………………………………… 91 圖4-18 600 ℃ 1小時氧化Cr-W鍍層SRV線磨耗試驗結果 (12分鐘) (a) 50 N, (b) 100 N………………………………………92 圖4-19 600 ℃ 1小時氧化Cr-W鍍層SRV點磨耗試驗結果(10N) (時間:2 min ; Stroke:0.2 mm)……………………… 93 圖4-20 600 ℃ 1小時氧化Cr-W鍍層SRV點磨耗試驗結果(10N) (時間:6 min ; Stroke:0.5 mm)……………………… 93 圖4-21 不同溫度氧化W20鍍膜之XRD繞射結果-I………………… 94 圖4-22 不同溫度氧化W20鍍膜之SEM圖-I………………………… 95 圖4-23 不同溫度氧化W20鍍膜之表面顏色觀察-I…………………97 圖4-24 不同溫度氧化W20鍍膜之表面粗糙度比較圖-I……………98 圖4-25 利用GDS分析不同溫度氧化W20鍍層之氧化深度-I……… 98 圖4-26 不同溫度氧化W20鍍膜之硬度值-I…………………………99 圖4-27 不同溫度氧化W20鍍膜之刮痕摩擦係數圖-I (40N處)……99 圖4-28 不同溫度氧化W20鍍膜之SRV線磨耗結果-I (12分鐘) (Load=100 N)..…………………………………………… 100 圖4-29 不同溫度氧化W20鍍膜之SRV點磨耗結果-I (10 N) (時間:6 min ; Stroke:0.5 mm)……………………… 100 圖4-30 不同溫度氧化W20鍍膜之XRD繞射結果-II…………………101 圖4-31 不同溫度氧化W20鍍膜之SEM圖-II…………………………102 圖4-32 不同溫度氧化W20鍍膜之表面顏色觀察-II……………… 104 圖4-33 不同溫度氧化W20鍍膜之表面粗糙度比較圖-II………… 105 圖4-34 利用GDS分析不同溫度氧化W20鍍膜之氧化深度-II………105 圖4-35 不同溫度氧化W20鍍膜之硬度值-II……………………… 106 圖4-36 不同溫度氧化W20鍍膜之刮痕摩擦係數圖-II (40 N處)…106 圖4-37 不同溫度氧化W20鍍膜之SRV線磨耗結果-II (12分鐘) (Load=100 N)…..………………………………………… 107 圖4-38 不同溫度氧化W20鍍膜之SRV點磨耗結果-II (10 N) (時間:6 min ; Stroke:0.5 mm)……………………… 107 圖4-39 車削實驗結果……………………………………………… 108 圖4-40 車刀刀腹磨耗圖(利用光學顯微鏡觀察)………………… 109 圖4-41 HT6-2鍍膜披覆於車刀之刀腹磨耗SEM圖………………… 111 圖4-42 鑽削實驗結果……………………………………………… 112 圖4-43 鑽針刀角及刀腹磨耗SEM圖…………………………………113 圖4-44 HT6-2鍍膜披覆於微鑽針之磨耗SEM圖…………………… 115

    1. 李邦哲, “薄膜成形技術的演進與未來-薄膜成形技術新紀元”, 台灣綜合展望, 2003.1.11, No.7.
    2. W.R. Grove, Phil. Trans. Roy. Soc. London, 5, 87 (1852).
    3. W.R. Grove, Phil. Mag., 5, 203 (1853).
    4. 董家齊, 陳寬任, “奇妙的物質第四態-電漿”, 科學發展, 354期, 2002, pp.52-59.
    5. 金原粲, “薄膜的基本技術”, 日本東京大學出版會社,1987年5月, p.3.
    6. 宋健民, ”以物理氣相沉積(PVD)鍍類似鑽石碳膜(DLC)(中)”, 工業材料148期, p.177.
    7. B. Window,” Recent advances in sputter deposition”, Surface and Coatings Technology, Vol.71 , 1995, pp.93-97.
    8. D. P. Monaghan, D. G. Teer, K. C. Laing, I. Efeoglu and R. D. Arnell, “Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering”, Surface and Coatings Technology, Vol.59, 1993, pp.21-25.
    9. P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, Vol.56, 2000, pp.159-172.
    10. K. H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier, Amsterdam, (1987), p.80.
    11. K. G, Budinski, “Surface Engineering for Wear Resistance”, Prentice Hall, New Jersey, (1988), p.16.
    12. Alicja Krella and Andrzej Czyżniewski, “Cavitation erosion resistance of Cr–N coating deposited on stainless steel”, Wear, Vol.260, 2006, pp.1324-1332.
    13. S. Kaciulis, A. Mezzi, G. Montesperelli, F. Lamastra, M. Rapone, F. Casadei, T. Valente and G. Gusmano, “Multi-technique study of corrosion resistant CrN/Cr/CrN and CrN : C coatings”, Surface and Coatings Technology, Vol.201, 2006, pp.313-319.
    14. Sang Yul Lee, BomSok Kim, Sung Dea Kim, GwangSeok Kim and Yeh Sun Hong, “Effect of Si doping on the wear properties of CrN coatings synthesized by unbalanced magnetron sputtering”, Thin Solid Films, Vol.506-507, 2006, pp.192-196.
    15. G. Gassner, P. H. Mayrhofer, J. Patscheider and C. Mitterer, “Thermal stability of nanocomposite CrC/a-C:H thin films”, Thin Solid Films, Vol.515, 2007, pp.5411-5417.
    16. Y. N. Kok and P. Eh. Hovsepian, “Resistance of nanoscale multilayer C/Cr coatings against environmental attack”, Surface and Coatings Technology, Vol.201, 2006, pp.3596-3605.
    17. N. Lecis, G. M. La Vecchia, M. Boniardi and F. D'Errico, “Fatigue behavior of duplex-treated samples coated with Cr(C,N) film”, Surface and Coatings Technology, Vol.201, 2006, pp.2335-2340.
    18. Jianjun Wei and Qunji Xue, “The friction and wear properties of Cr2O3 coating with aqueous lubrication”, Wear, Vol.199, 1996, pp.157-159.
    19. Giovanni Bolelli, Valeria Cannillo, Luca Lusvarghi and Tiziano Manfredini, “Wear behaviour of thermally sprayed ceramic oxide coatings”, Wear, Vol.261, 2006, pp.1298-1315.
    20. J. H. Ouyang and S. Sasaki, “Effects of different additives on microstructure and high-temperature tribological properties of plasma-sprayed Cr2O3 ceramic coatings”, Wear, Vol.249, 2001, pp.56-66.
    21. B. Navin ek and P. Panjan, “Oxidation resistance of PVD Cr, Cr-N and Cr-N-O hard coatings”, Surface and Coatings Technology, Vol.59, 1993, pp.244-248.
    22. Siegfried Hofmann and Hermann A. Jehn, “Effect of substrate material and residual atmosphere on the composition of the coating-substrate interface of nitride coatings”, Surface and Coatings Technology, Vol.41, 1990, pp.167-177.
    23. B. Navin ek and P. Panjan, “Oxidation of CrNx hard coatings reactively sputtered at low temperature”, Thin Solid Films, Vol.223, 1993, pp.4-6.
    24. I. Milosev, J. M. Abels, H. H. Strehblow, B. Navinsek, and M. M. Hukovic, “High temperature oxidation of thin CrN coatings deposited on steel”, Journal of Vacuum Science & Technology A, Vol.14, 1996, pp. 2527-2534.
    25. Thorsten Kacsich and Klaus-Peter Lieb, “Oxidation of thin CrN and Cr2N films analyzed via nuclear reaction analysis and Rutherford backscattering spectrometry”, Thin Solid Films, Vol.245, 1994, pp.4-6.
    26. T. Kacsich, K. P. Lieb, A. Schaper and O. Schulte, “Oxidation of thin chromium nitride films: kinetics and morphology”, Journal of Physics: Condensed Matter, Vol.8, 1996, pp.10703-10719.
    27. Hiroshi Ichimura and Atsuo Kawana, “High temperature oxidation of ion-plated CrN films”, Journal of materials research, Vol.9, 1994, pp.151-155.
    28. Eberhard Huber and Siegfried Hofmann, “Oxidation behaviour of chromium-based nitride coatings”, Surface and Coatings Technology, Vol.68-69, 1994, pp.64-69.
    29. F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, T. Sato, A. Nishijima, A. Kawana, H. Ichimura and T. Kikuchi, “X-ray absorption and X-ray photoelectron spectroscopic studies of air-oxidized chromium nitride thin films”, Thin Solid Films, Vol.281-282, 1996, pp.314-317.
    30. Shen-Chih Lee, Wei-Yu Ho and F. D. Lai, “Effect of substrate surface roughness on the characteristics of CrN hard film”, Materials Chemistry and Physics, Vol.43, 1996, pp.266-273.
    31. O. Knotek, W. Bosch, M. Atzor, W. D. Munz, D. Hoffmann, J. Goebel, High. Temperature - High Pressures, Vol.18, 1986, pp. 435-442.
    32. F. D. Lai and J. K. Wu, “High Temperature and Corrosion Properties of Cathodic-Arc-Plasma-Deposited CrN Coatings”, Surface and Coatings Technology, Vol.64, 1994, pp.53-57.
    33. J. Almer, M. Oden, L. Hultman and G. Hakansson, “Microstructural evolution during tempering of arc-evaporated Cr–N coatings”, Journal of Vacuum Science & Technology A, Vol.18, 2000, pp.121-130.
    34. C. Héau, R. Y. Fillit, F. Vaux and F. Pascaretti, “Study of thermal stability of some hard nitride coatings deposited by reactive magnetron sputtering”, Surface and Coatings Technology, Vol.120-121, 1999, pp.200-205.
    35. W. Herr and E. Broszeit, “The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings”, Surface and Coatings Technology, Vol.97, 1997, pp.335-340.
    36. 林琮暉, “非平衡磁控濺鍍氮化鉻及氧化鉻之磨潤特性及車削、鑽削性能研究”, 國立成功大學機械工程研究所碩士論文, 2006, p.28.
    37. Buichi Kubota, “Decomposition of Higher Oxides of Chromium Under Various Pressures of Oxygen”, J. Am. Ceram. SOC., Vol.44, 1961, pp.239-248.
    38. O. D. Greenwood, S. C. Moulzolf, P. J. Blau and R. J. Lad, “The influence of microstructure on tribological properties of WO3 thin films”, Wear, Vol.232, 1999, pp.84-90.
    39. P. Harlin, P. Carlsson, U. Bexell and M. Olsson, “Influence of surface roughness of PVD coatings on tribological performance in sliding contacts”, Surface and Coatings Technology, Vol.201, 2006, pp.4253-4259.
    40. T. Arai, H. Fujita and M. Watanabe, “Evaluation of adhesion strength of thin hard coatings”, Thin Solid Films, Vol.154, 1987, pp.387-401.
    41. William F. Smith, “Foundations of Materials Science and Engineering”, Mc Graw Hill, pp.208-210.
    42. S. Ranjana and D. N. William, Acta Materialia 50, 23(2002)
    43. 林琮暉, “非平衡磁控濺鍍氮化鉻及氧化鉻之磨潤特性及車削、鑽削性能研究”, 國立成功大學機械工程研究所碩士論文, 2006, pp.40-41.
    44. S. Sasaki, Y. F. Zhang, O. Yanagisawa and M. Izumi, “Light-induced ESR in polycrystalline and thin films of Cr2O3”, Journal of Magnetism and Magnetic Materials, Vol.310, 2007, pp.1008-1010.
    45. Mami Kurumada, Osamu Kido, Takeshi Sato, Hitoshi Suzuki, Yuki Kimura, Katsuya Kamitsuji, Yoshio Saito and Chihiro Kaito, “Structure of WO3 ultrafine particles and their characteristic solid states”, Journal of Crystal Growth, Vol.275, 2005, pp.e1673-e1678.

    下載圖示 校內:2008-07-05公開
    校外:2008-07-05公開
    QR CODE