| 研究生: |
陳柏成 Chen, Po-Cheng |
|---|---|
| 論文名稱: |
西元2012年Mount Tongariro 火山噴發對電離層擾動之研究 The ionospheric disturbances caused by the explosion of the Mount Tongariro volcano in 2012 |
| 指導教授: |
林建宏
Lin, Charles |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 電離層 、火山噴發 、雙頻全球衛星定位系統 |
| 外文關鍵詞: | ionosphere, volcano eruption, Global Positioning System |
| 相關次數: | 點閱:95 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
依據前人研究,已知火山噴發後造成大氣之擾動可以形成聲波在高空大氣傳遞。在亞電離層(subionosphere)的高度下,藉由雙頻全球衛星定位系統的量測可以了解中性粒子和自由電子之間耦合所造成電子濃度之變化。在西元2012年11月21日,位於紐西蘭之Mount Tongariro火山在國際標準時間零點二十分開始噴發,藉由紐西蘭GPS觀測站紀錄資料之分析,發現在噴發之後開始約10分鐘,觀測到有擾動波自火山噴發位置遠離。結果顯示,在11月21日出現以同心圓方式從火山中心向外傳遞的擾動現象,觀測到的水平波速從145m/s至684m/s不等。經研究分析為火山噴發所形成之大氣波主要有聲波及重力波的形式,而前人研究觀測之擾動速度屬於聲波,符合MSIS-E Atmosphere Model [Hedin, 1987,1991]模擬聲波在亞電離層高度下之波速;而本研究觀測之擾動為重力波,並經由小波分析(Wavelet Analysis)發現聲波頻率轉變成重力波之過程,符合理論聲波和重力波在等溫大氣下在亞電離層高度下臨界頻率之分布,呈現火山噴發形成重力波之現象。最後藉Atmosphere Ionosphere Perturbation Model進一步確認觀測結果,推論電離層火山噴發所造成的擾動主要為是能量變化所產生的而非火山噴發造成地表垂直速度變化所造成。本研究成果有助於進一步了解聲重力波之形成與火山噴發對電子濃度擾動之機制。
On November 21 2012, the explosion of the Mount Tongariro volcano in New Zealand occurred at UT 0:20. The New Zealand dense array of Global Positioning System recorded ionospheric disturbances as changes in Total Electron Content ~10 minutes after the eruption, and the concentric spread of disturbances also can be observed this day. Through using the spectral analysis of the rTEC time series in this study shows two peaks. The larger amplitudes are centered at 700 and 1400 seconds, in the frequency range of acoustic waves and gravity waves. The result supports the distribution of the periods of the acoustic waves and gravity waves at subionospheric height in theory. On the other hand, to model the rTEC perturbation created by the acoustic wave caused by the explosive eruption of the Mount Tongariro, we perform acoustic ray tracing and obtain sound speed at subionospheric height in MSIS-E-90. The result show that the velocity of the disturbances is not in the velocity range of sound speed. Through using the MSIS-E-90 Atmosphere Model and Horizontal Wind Model(HWM), we can obtain the vertical wave number and check the gravity waves can propagate at subionospheric height, to confirm that ionospheric disturbances caused by the explosive eruption is gravity-wave type. Finally, through using Atmosphere Ionosphere Perturbation Model, the result consists with the observation. This work demonstrates that Global Positioning System satellites are useful for near real-time ionospheric disturbances monitoring, and help to understand the mechanism of gravity waves caused by volcano eruption in the future.
Afraimovich, E. L., E. A. Kosogorov, and O. S. Lesyuta (2002), Effects of the August 11, 1999, total solar eclipse as deduced from total electron content measurements at the GPS network, J. Atmos. Sol. Terr. Phys., 64,1933–1941.
Artru, J., V. Ducic, H. Kanamori, P. Lognonne´, and M. Murakami (2005), Ionospheric detection of gravity waves induced by tsunamis, Geophys. J. Int., 160, 840– 848.
Johnson, J. B. (2003), Generation and propagation of infrasonic airwaves from volcanic eruptions, J. Volcanol. Geotherm. Res., 121, 1 –14.
Rozhnoi, A., et al. (2014) "Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations."Journal of Atmospheric and Solar-Terrestrial Physics107: 54-59.
Calais, E., and J. B. Minster (1995), GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045– 1048.
Calais, E., J. B. Minster, M. A. Hofton, and H. Hedlin (1998), Ionospheric signature of surface mine blasts from Global Positioning System measurements, Geophys. J. Int., 132, 191– 202.
Cheng, K., Huang, Y.H., (1992). Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J.Geophys.Res. 97,16995–17004.
Dautermann, T., Calais, E., Mattioli, G.S., (2009). GPS detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J. Geophys. Res. 114, B02202
Drob, D. P., J. T. Emmert, G. Crowley, and J. M. Picone (2008), An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res., A12304, doi:10.1029/2008JA013668.
Ducic, V., J. Artru, and P. Lognonne´ (2003), Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves, Geophys. Res. Lett., 30(18), 1951, doi:10.1029/2003GL017812.
Hao, Y.Q., Xiao, Z., Zhang, D.H., (2006). Responses of the ionosphere to the Great Sumatra earthquake and volcanic eruption of Pinatubo. Chin. Phys. Lett. 23 (7), 1955.
Hedin, A. E., N. W. Spencer, and T. L. Killeen (1988), Empirical global model of upper thermosphere winds based on Atmosphere and Dynamics Explorer satellite data, J. Geophys. Res., 93, 9959– 9978, doi:10.1029/ JA093iA09p09959
Hedin, A. E., et al. (1991), Revised global model of thermosphere winds 71 using satellite and ground-based observations, J. Geophys. Res., 96(A5), 7657–7688.
Heki, K., (2006). Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances. Geophys. Res. Lett. 33, L14303.
Heki, K., and J. Ping (2005), Directivity and apparent velocity of coseismic ionospheric disturbances observed with a dense GPS array, Earth Planet. Sci. Lett., 236, 845– 855.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins. (2000)"Global Positioning System.".
Igarashi, K., Kainuma, S.,Nishimuta, I., Okamoto, S., Kuroiwa, H., Tanaka, T., Ogawa, T., (1994). Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on June 15,1991.J.Atmos.Terr. Phys.56,1227–1234.
Kelly, M. C., (2009): The Earth's Ionosphere, Academic Press, 2nd Edition, Boston
Liu, J. Y., C. H. Chen, C. H. Lin, H. F. Tsai, C. H. Chen, and M. Kamogawa (2011), Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku Earthquake, J. Geophys. Res., 116, A06319.
Ratcliffe, John Ashworth (1972). An introduction to the ionosphere and magnetosphere. CUP Archive.
Roberts, D. H., et al. (1982), A large amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens, J. Geophys. Res., 87, 6291– 6301.
Shepherd, Gordon G., et al. (1993) "WINDII, the wind imaging interferometer on the upper atmosphere research satellite."Journal of Geophysical Research: Atmospheres (1984–2012)98.D6: 10725-10750.
Tsugawa, T., A. Saito, and Y. Otsuka (2004), A statistical study of large scale traveling ionospheric disturbances using the GPS network in Japan, J. Geophys. Res., 109, A06302, doi:10.1029/2003JA010302.
Zhang, D. H., and Z. Xiao (2005), Study of ionospheric response to the 4B flare on 28 October 2003 using International GPS Service network data, J. Geophys. Res., 110, A03307, doi:10.1029/2004JA010738.
蔡和芳(1999),「全球定位系統觀測電離層次道異常之研究」,國立中央大學,博士論文。
陳佳宏(2006),「電離層赤道異常與赤道電噴流」,國立中央大學,碩士論文。
校內:2018-09-01公開