簡易檢索 / 詳目顯示

研究生: 于曉璇
Yu, Hsiao-Hsuan
論文名稱: 奈米導熱複合材料於LED發光效率之研究
Study of High Thermal Conductive Nanocomposite Materials for LED Illumination Efficiency
指導教授: 黃明志
Huang, Ming-Zhi
沈聖智
Shen, Sheng-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 導熱材料熱阻量測奈米粉末LED晶片發光效率
外文關鍵詞: LED chip, thermal conductive material, thermal resistance measurement, nano-powder, illumination efficiency
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要探討係直接運用熱傳導方式冷卻時,以LED晶片的接面材料(Die attach material)固晶後,對LED光輸出效率之影響。由於LED晶片溫度越高,其發光效率下降,壽命縮短,且損壞率亦增加。故本文實驗中提出以使用奈米碳管、奈米碳球、石墨以及鑽石等材質之粉末,分別加入原始固晶銀膠,過程中改變各種材質摻雜的濃度或互相混合的比例,製做成奈米複合材料,分別觀察其導熱性。利用本文所設計的熱阻量測之實驗模組中,所架設的結構內埋入熱電偶,並量測溫度後經計算,了解奈米複合材料的熱傳導特性後,再應用於LED模組,且以紅外線熱像儀所拍攝測得之晶片溫度,探討奈米複合材料與原始銀膠為固晶材料時,對LED光輸出之影響,最終能立即改善LED晶片之散熱效果,並且間接提升發光效率與壽命。
      由熱阻量測結果顯示,以混合材料中的奈米碳球與石墨之粉末各1.5wt%之比例摻雜在銀膠內之效果最為顯著,而應用於LED且操作電流為700mA時,其晶片溫度為62.6℃,相較原始銀膠之晶片溫度為98.5℃;又另在操作電流350mA經72小時後,原始銀膠之LED晶片照度約剩71.7%,而奈米複合材料之LED晶片照度仍有80.3%,可證實奈米複合材料使導熱性大幅改善時,可提升LED的發光效率。

    This thesis presents LED thermal dissipation and illumination efficiency using different nanocomposite material with direct thermal conductive method. Since the temperature of LED chip is higher gradually, the luminous efficiency of LED would drop, shorten lifetime, and even increase the failure rate. Therefore, this thesis uses powder of carbon nanotube(CNT), carbon nanocapsules(CNC), graphite, and diamond doping into original Ag-epoxy for die bond, as well as observes LED thermal dissipation when changing the doping/mixing concentration. This thesis designs an experimental module to measure temperature by thermocouples inside the module, and calculates thermal resistances of different samples. Finally, chooses two samples to apply in LED for thermal dissipation and illumination.
    As results, from the experimental module, it shows the best performance when the sample is mixed with CNC 1.5% and Graphite 1.5% in Ag-epoxy, and when the operating current of LED is 700mA, its temperature of the chip is 62.6℃. Comparing with 98.5℃ of original Ag-epoxy, the sample with nanocomposite material performs better. Then after 72 hours later in 350mA current, the LED illumination of the original Ag-epoxy sample remains only 71.7%, but the sample mixed of CNC 1.5% and Graphite 1.5% in Ag-epoxy still remains 80.3% for. This study confirms using nanocomposite material can improve LED thermal dissipation, and also promote LED illumination efficiency.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究架構 3 第二章 文獻回顧 5 2.1 LED散熱鰭片 7 2.2 LED散熱基板 10 2.3 LED晶片封裝技術 14 2.4 LED固晶材料 15 第三章 實驗設計 20 3.1 奈米複合材料 20 3.1.1 奈米碳管 22 3.1.2 奈米碳球 24 3.1.3 石墨 26 3.1.4 鑽石 27 3.2 理論分析 29 3.3 實驗模組設計與分析 34 3.3.1 傳熱量量測( ) 34 3.3.2 等效熱阻 37 第四章 量測結果與討論 39 4.1 量測步驟 39 4.2 實驗模組測試結果 45 4.2.1 單一CNT不同重量比之結果分析 47 4.2.2 單一CNC不同重量比之結果分析 48 4.2.3 單一Graphite不同重量比之結果分析 49 4.2.4 單一Diamond不同重量比之結果分析 50 4.2.5 不同材料之結果分析 51 4.2.6 混和材料之3wt%的結果分析 53 4.3 發光二極體LED應用結果分析 55 第五章 結論與未來工作 60 5.1 結論 60 5.2 未來工作 61 參考文獻 62

    【1】 鄭景太,“高功率LED封裝技術發展現況(上篇)”,工業材料雜誌,第264期,pp.136-144,2008。
    【2】 黃孟嬌,“全球LED照明市場趨勢”,工業材料雜誌,第306期,pp.162-168,2012。
    【3】 邱國創,“LED高散熱封裝基板技術之發展與開發”,工業材料雜誌,第306期,pp.169-172,2012。
    【4】 K.C. Yung, H. Liem, H.S. Choy, “Thermal performance of high brightness LED array package on PCB,” International Communications in Heat and Mass Transfer, Vol.37, pp.1266-1272, 2010.
    【5】 D. Lu, C. Liu, X. Lang, B. Wang, “Enhancement of Thermal Conductivity of Die Attach Adhesives (DAAs) using Nanomaterials for High Brightness Light-Emitting Diode (HBLED),” Electronic Components and Technology Conference, 2011.
    【6】 C. J. Chen, C. M. Chen, R. H. Horng, “Thermal Management and Interfacial Properties in High-Power GaN-Based Light-Emitting Diodes Employing Diamond-Added Sn-3wt.% Ag-0.5wt.% Cu Solder as a Die-Attach Material,” Journal of Electronic Materials, Vol.39, No.12, pp.2618-2626, 2010.
    【7】 宋健民、甘明吉、蔡百揚、宋思齊,“鑽石加持的LED︰COB of DLC LED on DLC PCB (上)”,工業材料雜誌,第304期,pp.124-128,2012。
    【8】 C. J. Kuo, T. H. Tsai, “Carbon nano partitions for heat dissipation,” Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, 2011.
    【9】 X. Li, X. Chen, G. Q. Lu, “Reliability of high-power light emitting diode attached with different thermal interface materials,” Journal of Electronic Packaging, Vol.132, pp.031011(1-5), 2010.
    【10】 曾志豪、徐錦上,“散熱塗料技術發展與應用”,工業材料雜誌,第316期,pp.66-74,2013。
    【11】 R. H. Horng, J. S. Hong, Y. L. Tsai, D. S. Wuu, C. M. Chen, C. J. Chen, “Optimized Thermal Management From a Chip to a Heat Sink for High-Power GaN-Based Light-Emitting Diodes,” IEEE Transactions On Electron Devices, Vol.57, No.9, pp.2203-2207, 2010.
    【12】 鄭景太,“高功率LED 熱管理技術與量測”,工業材料雜誌,第256期,pp.180-189,2008。
    【13】 K. J. Gan, C. H. Chang, J. J. Lu, C. L. Lin, Y. K. Su, B. J. Li, W. K. Yeh, “Growth of Carbon Nanotube Using Microwave Plasma CVD and Its Application to Thermal Dissipation Of High-Brightness Light Emitting Diode,” Proceedings of the World Congress on Engineering, Vol. II, London, U.K., 2011.
    【14】 林瑞祥,“高導熱導電性質碳纖維製造技術開發”,逢甲大學材料科學所,2004。
    【15】 S. J. Park, H. J. Jeong , C. Nahb, “A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites,” Materials Science and Engineering: A, Vol.385, pp.13-16, 2004.
    【16】 A. Yasmin, J. J. Luo, I. M. Daniel, “Processing of expanded graphite reinforced polymer nanocomposites,” Composites Science and Technology, Vol.66, pp.1179-1186, 2006.
    【17】 K. B. Shina, C. G. Kima, C. S. Honga, H. H. Lee, “Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments,” Composites Part B: Engineering, Vol.31, pp. 223-235, 2000.
    【18】 成會明著,“奈米碳管”,五南出版社,2004。
    【19】 黃建盛,“奈米碳管簡介”,科學新天地,第13期,pp.4-9,2006。
    【20】 黃贛麟,“奈米碳球科學與應用”,化工資訊與商情,第34卷,pp.54-61,2006。
    【21】 黃贛麟、陳玟吟,“奈米碳球產業應用現況”,工業材料雜誌,第269期,pp.173-178,2009。
    【22】 李春義,“溫度對壓克力/石墨奈米複材之摩擦及磨耗影響”,國立雲林科技大學機械工程所,2009。
    【23】 A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Letters, Vol.8, No.3, pp.902-907, 2008.
    【24】 I.Krupa, I.Chodak, “Physical properties of thermoplastic/graphite composites,” European Polymer Journal, Vol.37, pp.2159-2168, 2001.
    【25】 http://news.xinhuanet.com/st/2005-11/01/content_3711486.htm
    【26】 https://www.gl.ciw.edu/making_multicarat_diamonds
    【27】 黃文雄著,“熱傳學”,中央出版社,1985。
    【28】 林振隆,“熱傳導值之測量方法”,工業材料雜誌,第309期,pp.90-97,2012。

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE