簡易檢索 / 詳目顯示

研究生: 王致凱
Wang, Chih-Kai
論文名稱: 磷化銦鎵與磷化銦系列異質結構 場效電晶體之研製
Fabrication of InGaP- and InP-Based Heterostructure Field-Effect Transistors
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 114
中文關鍵詞: 磷化銦磷化銦鎵異質結構場效電晶體金屬-半導體接面場效電晶體氧化層
外文關鍵詞: Pt, Au, oxide, Pd, InGaP, InP, MISFET, MESFET
相關次數: 點閱:77下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們描述金屬-半導體接面場效電晶體(metal-semiconductor field-effect transistors, MESFETs) 在下列不同的三種變因情形下之元件直流特性差異。其一,利用不同的閘極金屬(金(Au), 鉑(Pt) and 鈀(Pd))來做比較;其二,利用一層極薄的熱氧化層是否存在於閘極金屬和主動層通道之間來做比較;其三,利用不同的磷化銦鎵(InGaP)與磷化銦(InP)材料做為的金屬-半導體接面場效電晶體的主動層通道來做比較。
    在過去幾年,磷化銦鎵材料主要被用來當作提供較高的閘極障壁,然而在本文中我們利用以磷化銦鎵材料來作為元件之主動層通道。以磷化銦鎵材料做為主動層通道的金屬-半導體接面場效電晶體無論在室溫或高達450K的高溫下皆具有良好的低漏電流、高崩潰電壓、低輸出電導及高電壓增益等特性。再者,在不同溫度下之元件特性也有良好及平坦的操作區域。此外,磷化銦是引人注目的的材料,與砷化鎵為基板做比較,其具有較低的電子撞擊游離係數和較高的熱傳導係數、效率、累增崩潰,而且,磷化銦相對於其它的半導體材料在低電場時具有較高的電子移動率和較高的電子峰值速率。由於上述之原由,對於磷化銦材料的興趣日益增加。實驗上,以磷化銦材料做為主動層通道的金屬-半導體接面場效電晶體在不同溫度下皆具有良好的元件特性。
    由實驗結果得知金屬-氧化層-半導體接面場效電晶體比金屬-半導體接面場效電晶體具有較高的接面能障高度、導通電壓、崩潰電壓、三端開路狀態汲-源極崩潰電壓和在相同偏壓下具有較高的輸出電流和轉導值。再者,隨著所蒸著的金屬功函數增加而具有較高的接面能障高度和導通電壓 ( qfM(eV) Au:5.1、Pd:5.2、Pt:5.65) 。 相反地,隨著所蒸著的金屬功函數增加而具有較低的崩潰電壓和三端開路狀態汲-源極崩潰電壓。所有探討的元件都具有良好的直流表現和溫度相依特性。此外,由於磷化銦鎵材料具有較大的能隙( Eg=1.92 eV ),因此具有較佳的耐熱表現,而磷化銦材料具有較低的操作電壓,所以適合在低功率方面上的應用。另一方面,在不同溫度條件下,以磷化銦鎵材料作為主動層通道的金屬-半導體接面場效電晶體和金屬-氧化層-半導體接面場效電晶體在高溫操作下依然表現出良好的元件特性,這在高溫操作和微波電路方面上具有相當大的潛力。

    In this thesis, a comparative study DC performances and temperature-dependent characteristics of InGaP- and InP-based HFETs is presented. First, three different catalytic metals (platinum (Pt), palladium (Pd) and aurum (Au)) are used as gate metals for the studied HFETs. Second, a comparison is made for metal-semiconductor and metal-oxide-semiconductor field-effect transistors. Third, a comparison between InGaP and InP materials as active layer is employed.
    The InGaP layer is widely used as an insulator to provide large gate-barrier height over the past years. However, in this work, the In0.49Ga0.51P layer was used as an active channel layer. The InGaP MESFET shows the low leakage current, high breakdown voltage, low output conductance, and high DC gain ratio at room temperature and even at high temperature of 450K. Further, good DC performances and temperature-dependent characteristics with flat and wide operation regime are also obtained. In addition, InP is an attractive material for high-frequency power FETs because of its high electron peak velocity, low ionization coefficient, and good thermal conductivity as compared with GaAs-based material. Furthermore, high low-field electron mobilities, and higher peak electron velocities than other material systems are responsible for the InP material system. The InP MESFET also shows the good DC performances and temperature-dependent characteristics with flat and wide operation regime.
    Experimentally, It is found that, metal-oxide-semiconductor field-effect transistor (MISFET) shows the higher barrier height, turn-on voltage, breakdown voltage, offset voltage, output current, transconductance, and barrier height variation percentage than the metal-semiconductor field-effect transistor (MESFET). The barrier height and turn-on voltage are increased with increasing the metal work function ( qfM (eV) Au:5.1、Pd:5.2、Pt:5.65 ) . On the contrary, the breakdown voltage and offset voltage are decreased with increasing the metal work function. All studied devices also show good DC performances and temperature-dependent characteristics. In addition, InGaP material shows good heat-proof performance directly related to it’s larger bandgap (Eg=1.92 eV). InP material has lower operation voltage which is suitable for low-power electronic system applications. The InGaP MESFET and MISFET still show good characteristics even under the higher operating temperature. Therefore, it is believed that, the InGaP MESFET and MISFET are quite potential for the applications of high operating temperature and microwave circuits.

    Contents Abstract (Chinese) Abstract (English) Table Captions Figure Captions Chapter 1. Introduction …………………………………………. 1-1. Brief history of MESFET ………………………………... 1 1-2. Motivation for adopting InGaP and InP MESFET ….… 2 1-2-1 The advantages of InGaP material …….….…….… 2 1-2-2 The advantages of InP material ….....…….…….…. 3 1-3. Organization of this thesis .……….………..…. 5 Chapter 2. InGaP Hetrostructur Field-Effect Transistor ( HFET ) 2-1. Experimental Procedures …………………………..…. 6 2-1-1 Epitaxial growth of the studied devices ………... 6 2-1-2 Device fabrication process …………….……..… 6 2-2 Experimental Results and Discussions ………..…….. 8 2-2-1 DC performances of the InGaP MISFET ……..…. 8 2-2-2 Temperature-dependent characteristics ….……… 10 2-3. Summary ……………………………………………….. 14 Chapter 3 InP Hetrostructur Field-Effect Transistor ( HFET ) 3-1 Experimental Procedures …………………….……..….. 15 3-1-1 Epitaxial growth of the studied devices ………... 15 3-1-2 Device fabrication process …………….……..… 15 3-2 Experimental Results and Discussions ….……..……. 17 3-2-1 DC performances of the InGaP MESFET …...…. 17 3-2-2 Temperature-dependent characteristics ………… 19 3-3 Summary …………………………………………..…….. 23 Chapter 4 Comparison and analysis of InGaP and InP HFET 4-1. Introduction ....………….…………………..…..……. 24 4-2. The Influence of Experimental Parameters …...…..…25 4-2-1 Fermi level pinning effect ……………….…….…. 25 4-2-2 The effect of different Schottky metals …….…… 27 4-2-3 The effect of different structures .……………….. 31 4-3. Summary ………………………………………………………… 32 Chapter 5 Conclusion and Prospect 5-1. Conclusion ……………………………………………… 33 5-2. Prospect ………………………………………………… 35 References ………………………………………………………………. 37 Tables Figures Publication List Acknowledgement Biography

    References

    [1] Kwok Ng, “Complete guide to semiconductor devices”, chapter 21, pp.188.
    [2] C. A. Mead, “Schottky barrier gate field effect transistor”, Proc IEEE., vol. 54, pp.307, 1966.
    [3] W. W. Hopper and W. I. Lehrer, “An epitaxial field-effect transistor”, Proc IEEE., vol. 55, pp.1237, 1967.
    [4] M. Shur. Golio, “Modeling of GaAs and AlGaAS/GaAs field effect transistors”, in C. T. Wang, Ed., Introduction to semiconductor technology, Wiley, New York, 1990.
    [5] B. Turner, “GaAs MESFET Devices”, in M. J. Howes and D. V. Morgan, Eds., Gallium arsenide: Materials, devices, and circuits, Wiley, New York,1990.
    [6] M. A. Hollis and R. A. Murphy, “Homogenous field-effect transistors”, in S. M. Sze, Ed., High-speed semiconductor devices, WileyNew York, 1990.
    [7] J. Rodriguez-Tellez, B. P. Stothard, and M. AL-Daas, “Static,pulsed and frequency-dependent IV characteristics of GaAs FETs” , Proc. Inst. Elect. Eng.,pt G., vol.143, pp.129-133,June 1996.
    [8] T. M. Brooks, “Frequency and temperature dependency of output conductance of GaAs FETs” , Microwave J., vol. 38, no.8, pp.88-94, Aug. 1995.
    [9] K. Ueno, T. Furutsuka, H. Toyoshima, M. Kanamoyi and A. Higashiaka, “A high transconductance GaAs MESFET with reduced short channel effect characteristics”, IEDM Tech. Dig., pp.82, 1985.
    [10] J. M. Golio, M. G. Miller, G. N. Maracas, and D. A. Johnson, “Frequency-dependent electrical characteristics of GaAs MESFETs”, IEEE Trans Electron Devices ., vol.37,pp.1217-1227, May 1990.
    [11] J. Rodriguez, T. Fernandze, A. Mediavilla, and A. Tazon, “Characterization of Thermal and frequency-dispersion Effects in GaAs MESFET Devices”, IEEE Trans. On microwave theory and techniquest., vol.49, No 7, pp.1352-1355, July 2001.
    [12] Y. S. Lin, S. S. Lu, and T. P. Sun, “High-linearity high-current-drivability In0.49Ga0.51P/GaAs MISFET using In0.49Ga0.51P airbridge gate structure grown by GSMBE”, IEEE Electron Device Lett., vol.16, pp.518-520, 1995.
    [13] S. S. Lu , C. L. Huang, and T. P. Sun,H. Sato, “ High-breakdown-voltage In0.49Ga0.51P/GaAs I-HEMT and I2-HEMT with a InGaP passivation later grown by gas source molecular beam epitaxy ”, Solid-State Electron ., vol.38,pp.25-29, 1995.
    [14] Z. P. Jian, P. B. Fischer, S. Y. Chou, and M. I. Nathan, “Novel high mobility In0.49Ga0.51P/GaAs modulation-doped field-effect transistor structures grown using a gas source molecular beam epitaxy”, J. Appl. Phys., vol.71,pp.4632-4634, 1992.
    [15] Yo-Sheng Lin and Shey-Shi Lu, “High-breakdown-voltage Ga0.51In0.49P Channel MESFET’s Grown by GSMBE”, IEEE Electron Device Lett., vol.17, No. 9, pp.452-454, 1996.
    [16] Y. J. Chan, D. Pavlids, M. Razeghi, and F. Omnes, “In0.49Ga0.51P/GaAs HEMT’s exhibiting good electrical performance at cryogenic temperatures”, IEEE Trans. Electron Device., vol.37, pp.2141-2147, 1990.
    [17] W. C. Liu, W. L. Chang, H. J. Pan, J. Y. Chen, W. C. Wang, K. H. Yu, and S. C. Feng, “High-breakdown n+-GaAs/d(p+)-GaInP/n-GaAs heterojunction camel-gate FET grown by LP-MOCVD,” Journal De Physique, vol. 9, no. P8, pp. 1171-1177, 1999. (EI, SCI) (NSC-88-2215-E-006-012) W. C. Liu, S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu, “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, no. P8, pp. 1155-1161, 1999. (EI, SCI) (NSC-88-2215-E-006-012)
    [18] W. C. Liu, S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu, “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, no. P8, pp. 1155-1161, 1999. (EI, SCI) (NSC-88-2215-E-006-012)
    [19] W. C. Liu, H. J. Pan, S. Y. Cheng, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “MOCVD grown d-doped InGaP/GaAs heterojunction bipolar transistor,” Journal De Physique, vol. 9, no. P8, pp. 1163-1169, 1999. (EI, SCI) (NSC-88-2215-E-006-012)
    [20] W. C. Liu, H. J. Pan, S. Y. Cheng, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “MOCVD grown d-doped InGaP/GaAs heterojunction bipolar transistor,” Journal De Physique, vol. 9, no. P8, pp. 1163-1169, 1999. (EI, SCI) (NSC-88-2215-E-006-012)
    [21] Jing-Yuh Chen, Wei-Chou Wang, Hsi-Jen Pan, Shun-Ching Feng, and Kuo-Hui Yu, Shiou-Ying Cheng, Wen-Chau Liu, “Characteristics of InGaP/GaAs delta-doped heterojunction bipolar transistor,” J. Vac. Sci. & Technol., vol. B18, no. 2, pp. 751-756, 2000. (EI, SCI) (NSC-88-2215-E-006-012)
    [22] Kuo-Hui Yu, Kun-Wei Lin, Chin-Chuan Cheng, Kuan-Po Lin, Chih-Hung Yen, Cheng-Zu Wu, and Wen-Chau Liu, “InGaP/GaAs Camel-Like Field-Effect Transistor for High-Breakdown and High-Temperature Applications,” IEE Electron. Lett., vol. 36, no. 22, pp. 1886-1888, 2000. (EI, SCI) (NSC-89-2215-E-006-012)
    [23] Kuo-Hui Yu, Wen-Lung Chang, Shun-Ching Feng, and Wen-Chau Liu, “Characteristics of GaAs/InGaP/GaAs Doped Channel Camel-Gate Field-Effect Transistor,” Solid-State Electron., vol. 44, no. 22, pp. 2069-2075, 2000. (EI, SCI) (NSC-88-2215-E-006-010)
    [24] Kuo-Hui Yu, Kun-Wei Lin, Chin-Chuan Cheng, Wen-Lung Chang, Jung-Hui Tsai, Shiou-Ying Cheng and Wen-Chau Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, no. 1, pp. 24-27, 2001. (SCI) (NSC-89-2215-E-006-012)
    [25] Kun-Wei Lin, Kuo-Hui Yu, Wen-Lung Chang, Chin-Chuan Cheng, Kuan-Po Lin, Chih-Hung Yen, Wen-Shiung Lour, and Wen-Chau Liu, “Characteristics and Comparison of In0.49Ga0.51P/GaAs Single and Double Delta-Doped Pseudomorphic High Electron Mobility Transistors (d-PHEMT’s),” Solid-State Electron., vol. 45, no. 2, pp. 309-314, 2001. (EI, SCI) (NSC-89-2215-E-006-023)
    [26] Hsi-Jen Pan, Shun-Ching Feng, Wei-Chou Wang, Kun-Wei Lin, Kuo-Hui Yu, Cheng-Zu Wu, Lih-Wen Laih, and Wen-Chau Liu, “Investigation of an InGaP/GaAs Resonant-Tunneling Heterojunction Bipolar Transistor,” Solid-State Electron., vol. 45, no. 3, pp. 489-494, 2001. (SCI) (NSC-89-2215-E-006-012)
    [27] Wen-Chau Liu, Hsi-Jen Pan, Wei-Chou Wang, Shun-Ching Feng, Kun-Wei Lin, Kuo-Hui Yu, and Lih-Wen Laih, “On the Multiple Negative-Differential-Resistance (MNDR) InGaP/GaAs Resonant-Tunneling Bipolar Transistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1054-1059, 2001. (SCI) (NSC-89-2215-E-006-012)
    [28] Wen-Chau Liu, Wen-Lung Chang, Wen-Shiung Lour, Kuo-Hui Yu, Kun-Wei Lin, Chin-Chuan Cheng, and Shiou-Ying Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001. (SCI) (NSC-89-2215-E-006-012)
    [29] Wen-Chau Liu, Kuo-Hui Yu, Kun-Wei Lin, Jung-Hui Tsai, Cheng-Zu Wu, Kuan-Po Lin, and Chih-Hung Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001. (SCI) (NSC-89-2215-E-006-012)
    [30] Wen-Chau Liu, Kuo-Hui Yu, Rong-Chau Liu, Kun-Wei Lin, Chin-Chuan Cheng, Kuan-Po Lin, Chih-Hung Yen, and Cheng-Zu Wu, “Improved n+-GaAs/p+-In0.49Ga0.51P/n-GaAs camel-like gate structure for high-breakdown, low-leakage, and high-temperature applications,” Appl. Phys. Lett., vol. 79, pp. 967-969, 2001.(SCI) (NSC-89-2215-E-006-012)
    [31] W. C. Liu, H. J. Pan, C. H. Yen, K. P. Lin, C. Z. Wu, W. H. Chiou, and C. Y. Chen, “MOCVD grown InGaP/GaAs multiple negative-differential-resistance (MNDR) resonant-tunneling bipolar transistors,” Journal De Physique, vol. 11, pp. 931-936, 2001. (SCI) (NSC-89-2215-E-006-012)
    [32] W. C. Liu, K. H. Yu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, C. K. Wang, and H. M. Chuang, “MOCVD grown InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature operations,” Journal De Physique, vol. 11, pp. 951-955, 2001. (SCI) (NSC-89-2215-E-006-012)
    [33] N. Haarada, T. Saito, H. Oikawa, Y. Ohashi, Y. Awano, M. Abe, and K. Hikosaka, “0.1μm-gate InGaP/InGaAs HEMT technology for millimeter-wave applications”, IEICE Trans. Electron ., vol.E81-C, no.6, pp.876-881, 1998.
    [34] D. Geiger, E. Mittermeier, J. Dickman, C. Geng, F. Scholz, and E. Kohn, “Noise in channel doped GaInp/InGaAs HFET devices”, Electron Lett.,vol.31, no 15, pp.1295-1297, 1995.
    [35] Y. K. Ming, E. A. Beam, P. Saunier, and W. R. Frensley, “X-band InGaP PHEMT’s with 70% power-added-efficiency”, in IEEE MTT-S Int. Microwave symp. Dig., vol.3, pp. 1671-1674, 1998.
    [36] F. Ren, J. R. Lothian, H. Tsai, J. M. Kuo, J. Lin, J. S. Weiner, R. W. Ryan, A. Tate, and Y. K. Chen, “High performances Pseudomorphic InGaP/InGaAs power HEMT’s”, Solid-State Electron ., vol.41, no. 12, pp.1913-1915, 1997.
    [37] H. willemsen and D. Nicholson, “GaAs ICs in commercial OC-192 equipment”, IEEE GaAs IC Symp. Tech. Dig., pp10-13, 1996.
    [38] T. Ihara, Y. Oikawa, T. Yamamoto, H. Tomofuji, H. Hamaro, H. Ohnishi and Y. Watanabo, “InGaP/GaAs HBT-IC chipset for 10-Gb/s optical receiver”,IEEE GaAs IC Symp. Tech. Dig., pp.262-265, 1996.Superlattices & Microstructures, vol. 29, pp.133-145, 2001.
    [39] Y. S. Lin, S. S. Lu “High-power high-speed Ga0.51In0.49P/InXGa1-XAs doped-channel FET's” Indium Phosphide and Related Materials, 1997, International Conference on , 1997 , pp.396 –399.
    [40] A. Ginoudi, E. Paloura, G. Costandinidis, J. C. Garcia and P. Maurel, “Donor related deep traps in MOMBE Ga/sub 0.51/In/sub 0.49/P/GaAs heterostructures: influence on the low temperature performance of HEMTs”, Proc.4th Int. Conf. InP and Related Mater.,pp.389-392, 1992.
    [41] K Armaned, D. V Bui, J Cheverier, and N. T. Lihn, “High-power microwave amplification with InP MISFET,” in Proc. IEEE/Cornell Conf. High Speed Semiconductor Devices and Circuits (Ithaca, NY). New York: IEEE, 1984, pp.218-225.
    [42] Aaditya Mahajan, Mohamed Arafa, Patrick Fay, C. Caneau, and Ilesanmi Adesida, “Enhancement-Mode High Electron Mobility Transistor (E-HEMT’s) Lattice-Matched to InP,” IEEE Electron Device Lett., vol. 45, no. 12, December pp. 2422-2429, 1998.
    [43] M. Smith, “Status of InP HEMT technology for microwave receiver applications,” IEEE Trans., Microwave Theory Tech. vol. 44 no.8, pp. 2328-2333, 1996.
    [44] L. Messick, D. A. Collins, R. Nguyen, A. R. Clawson, and G. E. Mcwilliams, “High-power high-efficiency stable indium phosphide MISFETs,” in IDEM Tech. Dig., pp. 767-770, 1986
    [45] H. Tokuda, H. Kamo, F. Sasaki, and M. H.igashiura, “15GHz-band power InP MISFETs,” Inst. Phys. Conf. Ser. No.83 pp. 47-502, 1987.
    [46] P. Saunier, R. Nguyen, L. J. Messick, and M. A. Khatibzadeh, “An InP MISFET with a power density of 1.8W/mm at 30 GHz,” IEEE Electron Device Lett., vol. 11, no. 1, January pp. 48-49, 1990.
    [47] P. Saunier, R. J. Matyi, and K. Bradshaw, “A double-heterojunction doped-channel pseudomorphic power HEMT with a power density of 0.85W/mm at 55GHz,” IEEE Electron Device Lett., vol. 9, no.8, pp. 397-398, 1988.
    [48] B. Kim, R. J Matyi, and H. Q. Tserng, “AlGaAS/InGaAs/GaAs quantum-well power MISFET at millimeter-wave frequencies,” IEEE Electron Device Lett., vol. 9, pp. no.11, pp. 610-612, Nov, 1988.
    [49] P. M. Smith et al., “InGaAs pseudomorphic HEMTs for millimeter-wave power applications,” in 1988 MTT-S Dig., pp. 927-930.
    [50] Kuo-Hui Yu, Kun-Wei Lin, Shiou-Ying Cheng, Chin-Chuan Cheng, Jing-Yuh Chen, Cheng-Zu Wu, and Wen-Chau Liu, “Off-State Breakdown Characteristics of InGaP-Based High-Barrier Gate Heterostructure Field-Effect Transistors,” Superlattices & Microstructures, (to be published). (NSC-89-2215-E-006-028)
    [51] Wei-Chou Wang, Hsi-Jen Pan, Kong-Beng Thei, Kun-Wei Lin, Kuo-Hui Yu, Chin-Chuan Cheng, Lih-Wen Laih, Shiou-Ying Cheng, and Wen-Chau Liu, “Observation of resonant tunneling effect and temperature dependent characteristics of an InP/InGaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 15, no. 7, pp. 935-940, 2000. (EI, SCI) (NSC-89-2215-E-006-012)
    [52] Wen-Chau Liu, Hsi-Jen Pan, Wei-Chou Wang, Kong-Beng Thei, Kun-Wei Lin, Kuo-Hui Yu, and Chin-Chuan Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 524-527, 2000. (EI, SCI) (NSC-89-2215-E-006-012)
    [53] Hsi-Jen Pan, Wei-Chou Wang, Kong-Beng Thei, Chin-Chuan Cheng, Kuo-Hui Yu, Kun-Wei Lin, Cheng-Zu Wu, and Wen-Chau Liu, “Investigation of Temperature-Dependent Performances of InP/In0.53Ga0.34Al0.13As Heterojunction Bipolar Transistors,” Semicond. Sci. Technol, vol. 15, pp. 1101-1106, 2000. (EI, SCI) (NSC-89-2215-E-006-012)
    [54] Wei-Chou Wang, Hsi-Jen Pan, Kun-Wei Lin, Kuo-Hui Yu, Cheng-Zu Wu, Lih-Wen Laih, Shiou-Ying Cheng, and Wen-Chau Liu, “Investigation of InP/InGaAs Superlattice-Emitter Resonant Tunneling Bipolar Transistors (RTBT's),” Superlattices & Microstructures, vol. 29, no.2, pp.111-119, 2001. (SCI) (NSC-89-2215-E-006-012)
    [55] W. C. Liu, W. C. Wang, C. H. Yen, C. C. Cheng, C. Z. Wu, W. H. Chiou, and C. Y. Chuen, “A systematic study of MOCVD grown InP/InGaAlAs heterojunction bipolar transistors with anomalous switching behavior,” Journal De Physique, vol. 11, pp. 957-961, 2001. (SCI) (NSC-89-2215-E-006-029)
    [56] W. H. Chiou, H. J. Pan, R. C. Liu, C. Y. Chen, C. K. Wang, H. M. Chuang, and W. C. Liu, “Characterization of InP/InGaAs double-heterojunction bipolar transistors with tunnelling barriers and composite collector structures,” Semicond. Sci. Technol, vol. 17, pp. 87-92, 2002.
    [57] S. R. Bahl, and J. A. Del Alamo, “A new drain-current injection technique for the measurement of off-stata breakdown voltage in FET’s”, IEEE Trans. Electron Devices., vol.40, pp.1558-1560, 1993.
    [58] S. R. Bahl, and J. A. D. Alamo, “Physics of breakdown in InAlAs/n+-InGaAs heterostructure field-effect transistors”, IEEE Trans. Electron Devices., vol.41, pp.2268-2275, 1994.
    [59] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperatures”, IEEE Trans. Electron. Devices, vol. 42, pp. 1724-1734, 1995.
    [60] R. E. Anholt, and S. E. Swirhun, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuit,” IEEE Trans. Electron. Devices, vol.39, pp. 2029-2036, 1992.
    [61] C. D. Wilson, and A. G. Oneill, “High temperature operation of GaAs based FETs,” Solid-State Electronics, vol. 38, pp. 339-343, 1995.
    [62] C. Ito, T. Jenkins, G. Trombley, R. Lee, R. Reston, C. Havasy, B. Johnson, and C. Eppers, “High-temperature microwave characteristics of GaAs MESFET device with AlAs buffer layers,” IEEE Electron Device Lett., vol. 17, pp. 16-18, 1996.
    [63] K. Fricke, H. L. Hartnagel, R. Schutz, G. Schweeger, and J. Wurfl,“A new GaAs technology for stable FETs at 300 degrees C”, IEEE Electron Device Lett., vol.10,pp.577-579, 1989.
    [64] J. Wurfl,, “Recent advances in GaAs devices for use at high temperatures”, High-Temperature Electronic Materials, Devices and Sensors Conference, pp.106-116, 1998.
    [65] J. Wurfl, B. Janke, E. Nebauer, S. Thierbach, and P. Wolter, “High temperature MESFET based integrated circuits operating up to 300°C”, Electron Devices Meeting, International, pp.219-222, 1996.
    [66] Wen-chau Liu, Wen-lung Chang, Wen-Shiung Lour, Shiou-Ying Cheng, Yung-Hsin Shie, Jing-Yuh Chen, Wei-Chou Wang, and His-Jen Pan, “Temperature-Dependent Investigation of a High-Breakdown Voltage and Low-Leakage Current Ga0.51In0.49P/In0.15Ga0.85As Pseudomorphic HEMT”, IEEE Electron Device Lett., vol.20, pp.274, 1998.
    [67] G. Meneghesso, T. Grave, M. Manfredi, M. Pavesi, C. Canali, and E. Zanoni, “Analysis of hot carrier transport in AlGaAs/InGaAs pseudomorphic HEMTs by means of electroluminescene”, IEEE Trans. Electron Devices., vol.47, pp.2, 2000
    [68] M. H. Somerville, R. Blanchard, J. A. Del Alamo, K. G. Duh, and P. C. Chao, “On-state breakdown in power HEMT: measurements and modeling,” IEEE Trans. Electron Devices., vol.46, pp.1087, 1999.
    [69] R. Narasimhan, L. P. Sadwick, and R. J. Hwu, “Enhancement of high-temperature high-frequency performance of GaAs-based FETs by the high-temperature electronic technique,” IEEE Trans. Electron Devices., vol.46, pp.24, 1999.
    [70] S. J. Zurek, R. B. Darling, K. J. Kuhn, and M. C. Foisy, “Elevated temperature performance of Pseudomorphic AlGaAs/InGaAs MODFETs,” IEEE Trans Electron Devices, vol.45, pp.2, 1998.
    [71] L. P. Sadwick, R. M. Mcdonald, R. J. Croffs, J. Koniak, R. J. Hwu, and M. Sokolich, “350°C GaAs MESFET-based electronic technology,” in Proc. Second Int. High Temperature Conf., NC. June 1994, p. V-27.
    [72] L. P. Sadwick, R. J. Croffs, Y. H. Feng, M. Sokolich, and R. J. Hwu, “Low leakage, high performance GaAs -based high-temperature electronics,” in 21st Int. Symp. Compound Semiconductors, San Diego, CA, Sept. 19-33, 1994, p. 63.
    [73] R. Lee, G. Trombley, B. Johnson, R. Reston, C. Havasy, and M. Mah, “Low leakage, GaAs MESFET devices operating to 350°C,” in Proc. Second High-Temperature Electronics Conf., NC. 1994, pp. V-3-V-8.
    [74] W. C. Liu, S. Y. Cheng, J. H. Tsai, P. H. Lin, J. Y. Chen, and W. C. Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE Electron Device Lett., vol. 18, no. 11, pp. 515-517, 1997.
    [75] A. Belache, A. Vanoverschelde, G Samler, and M. Wolny, “Experimental analysis of HEMT behavior under low-temperature conditions,” IEEE Trans Electron Devices t., vol. 38, pp. 3, 1991.
    [76] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current GaInP/InGaAs pseudomorphic HEMT”,IEEE Electron Device Lett., vol.20, pp.274-276, 1999.
    [77] R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove and F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMT’s”, IEEE Microwave and Guided Wave Lett., vol.7, pp.3, 1997.
    [78] M. Feng, D. Scherrer, P. J. Apostolakis, and J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25 mm gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Electron Trans Devices., vol.43, pp.852, 1996.
    [79] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperatures”, IEEE Trans. Electron. Devices, vol. 42, pp. 1724-1734, 1995.
    [80] Y. Ytterdal, M. Hurt, M. Shur, H. Park, R. Tsai, and W. C. B. Peatman, “High-temperature characteristics of 2-D MESFET’s,” IEEE Electron Device Lett., vol. 17, pp. 214-216, 1996.
    [81] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, pp. L1385-L1387, 1999.
    [82] C. D. Wilson, and A. G. Oneill, “High temperature operation of GaAs based FETs,” Solid-State Electronics, vol. 38, pp. 339-343, 1995.
    [83] C. D. Wilson, A. G. O’neill, S. M. Baier, and J. C. Nohava, “High temperature performance and operation of HFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 201-206, 1996.
    [84] J. Rodriguez-Tellez, B. P. Stothard , and M. Al-Dass, “Static, pulsed and frequency-dependent IV characteristics of GaAs FET’s,”Proc. Inst. Elect. Eng., pt. G. vol. 143, pp.129-133, June 1996.
    [85] J. Rodriguez-Tellez, “Frequency and temperature dependency of output conductanceof GaAs FETs,” Microwave. J., vol. 38, np.8 pp. 88-94, Aug. 1995.
    [86] J. M. Golio, M.G. Miller, G. N. Maracas, and D. A. Johoson, “Frequency-dependent electrical characteristics of GaAs MESFETs,” IEEE Trans. Electron Devicse, vol. 37, pp. 1217-1227, May. 1990.
    [87] J. Rodriguez-Tellez, T. Fernandez, A. Mediavilla, and A. Tazon, “Characteristics of Thermal and Frequency-Dispersion Effects in GaAs MESFET Devicess,” IEEE Transactions on Microwave Theory and Techniqu., vol. 39, no.7 pp. 1352-1355, July 2001.
    [88] Renyu Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Low-temperature alikali metal/III-V interfaces: A study of metallization and Fermil level movement,” J. Vac. Sci. Technol. B7 (4), pp.919-924 Jul/Aug 1989.
    [89] N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindau, “On the Fermil level pinning behavior of metal/III-V interfaces: A study of metallization and Fermil level movement,” J. Vac. Sci. Technol. B4 (4), pp.931-938 Jul/Aug 1986.
    [90] W. E. Spicer, S. Pan, D. Mo, N. Newman, P. Mahowald, T. Kendelewicz, and S. Eaglash, “Metallic atomic approximations at the Schottky barrier interfaces,” J. Vac. Sci. Technol. B2 (3), pp.476-480 Jul-Sept 1984.
    [91] Presented by A. M. Cowley and S.M. Sze
    [92] Presented by A. M. Cowley and S.M. Sze
    [93] Presented by Kurtin, McGill and Mead, Phys. Rev. Lett. 22, 1433, 1969.
    [94] Hideki Hasegawa, “Controlled formation of high Schottky barriers on InP and related materials,” 10th Intem. Conf. On Indium Phosphide and Related Materials WB4-1(invited) 11-15 May 1998. Tsukuba, Japan
    [95] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), chapter5.
    [96] D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1990), pp. 130-137.
    [97] W. P. Kang and Y. Gurabuz, “Comparison and analysis of Pd and Pt GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys. vol.75, pp 8175-8185, 1994.
    [98] R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts,” J. Appl. Phys. vol.76, pp 403-406, 1994.
    [99] C. Tedesco, E. Zanoni, C. Canai, S. Bigliard, M. Manfredi, P. C. streit, and W. T. Anderson, “Impact ionization and light emission in high power pseudomorphic AlGaAs/InGaAs HEMT’s” IEEE Trans. Electron Devices, vol. 40, pp.1211-1214, July 1993.
    [100] M. Yamada, A. M. Green, A.H. Gomez, T. Kendelewicz, and W. E. spicer, “Thermal stability of Svhottky barriers at Au and Ag/InP (110) interfaces with Sb interlayers” Appl. Phys Lett.. vol.51, pp 3121-3123, 1991.
    [101] T. Kendelewicz, N. Newman, R. S. List, I. Lindau, and W. E. Spicer, “Schottky
    barriers on atomically clean n-InP (110),”J. Vac. Sci. Technol. B, vol.3, pp.1206, 1985.
    [102] H. C. Kuo, B. G. Moser, H. Hsia, Z. Tang, M. Feng, and G. E. Stillman “Growth of high performance GaInP/InP doped channel heterojunction field effect transistor with a strained GaInP Schottky barrier enhancement layer by gas source Molecular beam epitaxy,” J. Vac. Sci. Technol. B., vol.17, pp.1139-1143, May/Jun 1999.
    [103] N. Newman, T. Kendelewicz, L. Bowman, and W. E. Spicer “Electrical study of Schottky barrier heights on automically clean and air-exposed n-InP (110) surfaces,” APPL. Phys. Lett., vol.46, no. 12, 15 pp.1176-1178, June 1995.

    下載圖示 校內:2003-07-06公開
    校外:2003-07-06公開
    QR CODE