| 研究生: |
李彥璋 Li, Yan-Jang |
|---|---|
| 論文名稱: |
以非線性摩擦力補償之線性馬達精密運動控制 Precision Motion Control of Linear Motor with Nonlinear Friction Phenomena Compensation |
| 指導教授: |
田思齊
Tien, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 線性馬達 、摩擦力補償 、精密運動控制 |
| 外文關鍵詞: | Linear motor, friction compensation, precision motion control |
| 相關次數: | 點閱:162 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的在於藉由非線性摩擦力的補償,以達到線性馬
達的精密運動控制。由於摩擦力現象在馬達運行時會產生複雜的抵抗
力,因此LuGre摩擦力模型被應用於描述摩擦力行為並作回授補償。
此外,馬達運動性能亦受其他因素(例如cogging force、建模誤差、速
度估測雜訊)影響,故雜訊觀察器被應用於排除摩擦力以外因素造成
的追蹤誤差。前饋控制配合增益控制器則被應用於改善隨著追蹤訊號
頻率增高而造成追蹤能力的衰減。本研究包含LuGre摩擦力模型參數
識別,並將此模型藉由實驗來驗證其對精密運動控制的誤差補償。由
實驗可知,經由增益控制器、前饋控制以及雜訊觀察器所得的控制
結果,可有效改善馬達運動控制誤差並與理論相符。另一方面,加
入LuGre摩擦力模型控制後產生的抖動問題,亦於最後加以討論。
The main goal of this paper is to achieve precision motion control of linear motor with
nonlinear friction phenomena compensation. Because friction phenomena act as complex
resistant force when motor moves, LuGre friction model was applied to capture the friction
characteristics and added into feedback control. In addition, the motion performance was
also affected by other factors(for example, cogging force, modeling error and measured
noise.); therefore, the disturbance observer was applied to reduce tracking error due to these
factors. Feed-forward with proportional controller was added to remedy decline of tracking
performance when frequencies of position command increased. In this research, parameters
identification of LuGre friction model was included. To study its contribution in motion
control, the model was applied into control schemes and implemented by experiment. From
experiment results, motion control with proportional controller, feed-forward control and
disturbance observer showed improvement in error reduction, which was consistent with
theoretical analysis. On the other hand, the tracking vibration due to applying disturbance
observer and LuGre friction model were the problems being discussed in this paper, too.
[1] S.J. Imen and M. Shakeri. Feed forward adaptive control of a linear brushless dc motor. Society of Instrument and Control Engineers, 2007 Annual Conference, pages P.2200–2204, 2007.
[2] H. Olsson, K.J. Astrom, C. Canudas De Wit, M. Gafvert, and P. Lischinsky. Friction models and friction compensation. European Journal of Control, vol.4(3):P.176–195, 1998.
[3] P. Dahl. A solid friction model. Technical Report TOR-0158(3107V18)-1, The Aerospace Corporation, El Segundo, CA, 1968.
[4] D. Karnopp. Computer simulation of stick-slip friction in mechanical dynamic systems. American Society Of Mechanical Engineers Journal of Dynamic Systems, Measurement and Control, vol. 107:P.100–103, 1985.
[5] D.P. Hess and A. Soom. Friction at a lubricated line contact operating at oscillating sliding velocities. American Society Of Mechanical Engineers, vol.112(1):P.147–152, 1990.
[6] D. Haessig and B. Friedland. On the modeling and simulation of friction. American Society Of Mechanical Engineers Journal of Dynamic Systems, Measurement and Control, vol.113(9):P.354–362, 1991.
[7] B. Armstrong-Helouvry, P. Dupont, and C. Canudas De Wit. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, vol.30(7):P.1083–1138, 1994.
[8] C. Canudas de Wit, H. Olsson, K.J. Astrom, and P. Lischinsky. A new model for control of systems with friction. IEEE Transactions on Automatic Control, vol.40(3):P.419–425, 1995.
[9] C. Canudas De Wit and P. Lischinsky. Adaptive friction compensation with partially known dynamic friction model. International Journal of Adaptive Control and Signal Processing, vol.11(1):P.65–80, 1997.
[10] K. Ohnishi. A new servo method in mechatronics. Transactions of the Japanese Society of Electrical Engineering, vol.107-D:P.83–86, 1987.
[11] S. Komada, M. Ishidar, and K. Ohnishi. Motion control of linear synchronous motors based on disturbance observer. IEEE IECON, vol.1:P.154–159, 1990.
[12] X. Chen, S. Komada, and T. Fukuda. Design of a nonlinear disturbance observer. IEEE Transactions on Industrial Electronics, vol.47(2):P.429–437, 2000.
[13] T. Umeno and Y. Hori. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics, vol.38(5):P.363–368, 1991.
[14] K. Yamada, S. Komada, M. Ishida, and T. Hori. Characteristics of servo system using high order disturbance observer. Decision and Control, pages P.3252–3257, 1996.
[15] S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori. Robust digital tracking controller design for high-speed positioning systems. Control Engineering Practice, vol.4(4):P.527–536, 1996.
[16] C.J. Kempf and S. Kobayashi. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology, vol.7(5):P.513–526, 1999.
[17] H.T. Choi, B.K. Kim, I.H. Suh, and W.K. Chung. Design of robust high-speed motion controller for a plant with actuator saturation. Journal of Dynamic Systems, Measurement, and Control, vol.122(3):P.535–541, 2000.
[18] K.S. Eom, I.H. Suh, and W.K. Chung. Disturbance observer based path tracking control of robot manipulator considering torque saturation. Advanced Robotics, pages P.651–657, 1997.
[19] J. Ishikawa and M. Tomizuka. Pivot friction compensation using an accelerometer and adisturbance observer for hard disk drives. IEEE/ASME Transactions on Mechatronics, vol.3(3):P.194–201, 1998.
[20] G. Ellis and R.D. Lorenz. Comparison of motion control loops for industrialapplications. Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, vol.4:P.2599–2605, 1999.
[21] R.W. Brockett. Poles, zeros, and feedback state space interpretation. IEEE Transactions on Automatic Control, vol.10:P.129–135, 1965.
[22] L. Silverman. Inversion of multivariable linear systems. IEEE Transactions on Automatic Control, vol.14:P.270–276, 1969.
[23] S. Devasia. Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE Transactions on Automatic Control, vol.47(11):P.1865–1871, 2002.
[24] D. Tarniceriu and V. Munteanu. Feedforward controller synthesis for linear time variant systems. Asian Journal of Control, vol.10(5):P.589–602, 2008.
[25] R. Vilanova. Feedforward control for uncertain systems. internal model control approach. IEEE Conference on Emerging Technologies and Factory Automation(ETFA 2007), pages P.418–425, 2007.
[26] V. Cerone, M. Milanese, and D. Regruto. Robust feedforward design for a two-degrees of freedom controller. Systems and Control Letters, vol.56:P.736– 741, 2007.
[27] S.M. Hwang, J.B. Eom, G.B. Hwang, W.B. Jeong, and Y.H. Jung. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Transactions on Magnetics, vol.36(5):P.3144–3146, 2000.
[28] O. Reynolds. On the theory of lubrication and its application to Mr. beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical Transactions of the Royal Society of London, vol.177:P.157–234, 1886.
[29] A.J. Morin. New friction experiments carried out at metz in 1831 - 1833. Proceedings of the French Royal Academy of Sciences, vol.4:P.1–128, 1833.
[30] R. Stribeck. Die wesentlichen eigenschaften der gleit- und rollenlager - the key qualities of sliding and roller bearings. Zeitschrift des Vereines Seutscher Ingenieure, vol.46(38,39):P.1342–1348,P.1432–1437, 1902.
[31] R.S.H. Richardson and H. Nolle. Surface friction under time-dependent loads. Wear, vol.37(1):P.87–101, 1976.
[32] C.G. Jeans, R.J. Cruise, and C.F. Landy. Methods of detent force reduction in linear synchronous motors. Electric Machines and Drives, pages P.437–439, 1999.
[33] H.J. Kwon, S.J. Oh, and J. Lee. A modeling of frictional contact for haptic display. International Conference on Control, Automation and Systems, pages P.1116–1119, 2007.
[34] P. Dupont. Avoiding stick-slip through pd control. IEEE Transactions on Automatic Control, vol.39(5):P.1094–1097, 1994.
[35] K.K. Tan, S. Huang, and T.H. Lee. Adaptive friction compensation with time-delay friction model. Proceedings of the World Congress on Intelligent Control and Automation, vol.2:P.969–973, 2002.
[36] T. Li and G. Slemon. Reduction of cogging torque in permanent magnet motors. IEEE Transactions on Magnetics, vol.24(6):P.2901–2903, 1988.
[37] T. Yoshimura, H.J. Kim, M. Watada, S. Torii, and D. Ebihara. Analysis of the reduction of detent force in a permanent magnetlinear synchronous motor. IEEE Transactions on Magnetics, vol.31(6):P.3728–3730, 1995.
[38] P.J. Hor, Z.Q. Zhu, D. Howe, and J. Rees-Jones. Minimization of cogging force in a linear permanent-magnet motor. IEEE Transactions on Magnetics, vol.34(5):P.3544–3547, 1998.
[39] M. Inoue and K. Sato. An approach to a suitable stator length for minimizing the detentforce of permanent magnet linear synchronous motors. IEEE Transactions on Magnetics, vol.36(4):P.1890–1893, 2000.
[40] P. Van Den Braembussche, J. Swevers, H. Van Brussel, and P. Vanherck. Accurate tracking control of linear synchronous motor machine tool axes. Mechatronics, vol.6(5):P.507–521, 1996.
[41] G. Otten, T.J.A. De Vries, J. Van Amerongen, A.M. Rankers, and E.W. Gaal. Linear motor motion control using a learning feedforward controller. IEEE/ASME Transactions on Mechatronics, vol.2(3):P.179–187, 1997.
[42] J.W. Lee, J.H. Suh, Y.J. Lee, and K.S. Lee. High precision control for linear motor-based container transfer system with cogging force and friction. Industrial Electronics Conference, vol.3:P.2992–2997, 2004.
[43] H.H. Mu, Y.F. Zhou, X. Wen, and Y.H. Zhou. Calibration and compensation of cogging effect in a permanent magnet linear motor. Mechatronics, vol.19(4):P.577–585, 2009.
[44] L. Lu, B. Yao, Q.Wang, and Z. Chen. Adaptive robust control of linear motors with dynamic friction compensation using modified lugre model. Automatica, vol.45(12):P.2890–2896, 2009.
[45] L. Wang and Y. Tang. Fuzzy cross-coupling control for dual linear motors based on preview feedforward compensation. IEEE International Conference on Mechatronics and Automation, pages P.2138–2142, 2009.
[46] Y.T. Shih. The high precision control for a linear-motor-driven motion stage with friction compensation. PhD thesis, National Chiao Tung University, Mechanical Engineering, 2004.
[47] Z.Q. Zhu, Z.P. Xia, D. Howe, and P.H. Mellor. Reduction of cogging force in slotless linear permanent magnet motors. IEE Proceedings-Electric Power Applications, vol.144(4):P.277–282, 1997.
[48] P.I. Ro, W. Shim, and S. Jeong. Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system. Precision Engineering, vol.24(12):P.160–173, 2000.
[49] T.Y. Lin, Y.C. Pan, and C. Hsieh. Precision-limit positioning of direct drive systems with the existence of friction. Control Engineering Practice, vol.11:P.233–244, 2003.
[50] R.H. Brown, S.C. Schneider, and M.G. Mulligan. Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE Transactions on Industrial Electronics, vol.39(1):P.11–19, 1992.