簡易檢索 / 詳目顯示

研究生: 王駿融
Wang, Chun-Jung
論文名稱: 以自動機為基礎的緊急應變步驟-搜尋及驗證
Automata Based Emergency Response Procedures - Synthesis and Verification
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 144
中文關鍵詞: 自動機異常狀態管理批次製程緊急應變動態模擬
外文關鍵詞: Automata, Abnormal situation management, Batch processes, Emergency response procedure, Dynamic simulation
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周嚴的工廠異常狀態管理(Abnormal Situation Management)可被認為是包含了操作過程中所有失誤之即時辨識與減輕。一般而言,系統整體的診斷解析度是可以藉由增設感測器來提升,但若不希望增加設備投資的預算,則可藉由執行額外的診斷測試步驟來分辨出失誤根源。而在另一方面,失誤診斷後所執行的應變步驟也是相當重要的,包括如何使系統在安全的容許範圍內且產量可接受的情況下繼續維持生產,或是直接緊急停俥。過去文獻通常僅針對失誤診斷或是操作步驟等單一議題作局部性探討,並無涵蓋整個異常狀態管理範圍的通盤研究,因此本研究希望能針對此一缺點發展出建造批次製程中所有設備元件的自動機模型,並標準化緊急應變步驟的搜尋方法,包含診斷測試與應變操作的規劃,最後也利用ASPEN Plus Dynamics執行動態模擬研究來驗證可行性與正確性。

    The term “abnormal situation management” (ASM) in general refers to timely identification and mitigation of any significant departure of the chemical process from acceptable normal operating conditions. The diagnostic performance of a given batch process can usually be enhanced with additional online sensors. However, if it is undesirable to increase the capital budget, diagnostic tests may be devised and executed to differentiate fault origins which are originally inseparable. On the other hand, it should be noted that the emergency response operations after fault diagnosis is also important. A set of efficient controller actions may be identified to steer the batch system away from hazardous conditions while still maintain an acceptable production rate or simply to bring it to the shutdown condition.
    Although there have been numerous related previous studies, each of them addressed the aforementioned issues only partially. An automata-based modeling strategy is therefore proposed in this thesis to synthesize all operating procedures needed for ASM in any given batch process. The validity of this approach has also been verified in dynamic simulation studies in several realistic examples with ASPEN Plus Dynamics.

    目錄 摘要 I Abstract II 英文延伸摘要 III 誌謝 X 目錄 X 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3研究目的 3 1.4章節組織 4 第二章 批次製程自動機模型 5 2.1確定性自動機的模型結構 5 2.2批次製程的分層結構 5 2.3建模工具SUPREMICA 8 2.4批次製程的建模方法 10 表2.1 代表元件狀態的變數值. 11 表2.2 故障事件代號 12 2.4.1步驟一 12 2.4.2步驟二 17 2.4.3步驟三 19 表2.3 原始診斷結果 21 2.5診斷器內不可診斷的可視事件串 21 第三章 緊急應變步驟的搜尋方法 23 3.1診斷測試 23 3.1.1測試目標 23 3.1.2建模及搜尋程序 25 3.1.3案例演練 26 3.2 應變操作 40 3.2.1測試後之可視事件串 40 3.2.2操作目標 40 3.2.3案例演練 45 第四章 ASPEN模擬驗證 71 4.1 基本架構 71 4.2 轉檔設定 71 表4.1 三儲槽系統穩態模擬結果 72 4.3正常操作的動態模擬結果 73 4.4緊急應變操作的動態模擬結果 75 4.5初步結論 84 第五章 案例探討 85 5.1批次蒸發系統 85 5.1.1系統描述 85 表5.1 批次蒸發系統中可能的故障 88 5.1.2自動機模型 89 表5.2 代表元件狀態的變數值 91 5.1.3緊急應變 97 5.1.3.1診斷測試 97 5.1.3.2應變操作 99 5.1.4 ASPEN模擬 102 5.2液氨卸載系統 110 5.2.1 系統描述 110 表5.3液氨卸載系統可能發生的故障 112 5.2.2自動機模型 113 5.2.3緊急應變 119 5.2.4 ASPEN模擬 123 第六章 結論與展望 135 6.1研究結論 135 6.2未來展望 135 參考文獻 137 附錄 Ⅰ 140 附錄 Ⅱ 144

    Åkesson, K., Fabian, M., Malik, R., 2006. Supremica – An integrated environment for verification, synthesis and simulation of discrete event systems. Proceedings of the 8th International Workshop on Discrete Event Systems, IEEE. 384-385.

    Benveniste, A., Fabre, E., Haar, S., Jard, C., 2003. Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Trans. Autom. Control 48 (5), 714–727.

    Caccavale, F., Pierri, F., Iamarino, M., Tufano, V., 2009. An integrated approach to fault diagnosis for a class of chemical batch processes. Journal of Process Control 19 (5), 827–841.

    Chen, J., Jiang, Y.C., 2011. Development of hidden semi-Markov models for diagnosis of multiphase batch operation. Chemical Engineering Science 66 (15), 1087–1099.

    Chen, Y.C., Yeh, M.L., Hong, C.L., Chang, C.T., 2010. Petri-net based approach to configure online fault diagnosis systems for batch processes. Ind. Eng. Chem. Res. 49 (9), 4249-4268.

    Dai, Y., Zhao, J., 2011. Fault Diagnosis of Batch Chemical Processes Using a Dynamic Time Warping (DTW)-Based Artificial Immune System. Ind. Eng. Chem. Res. 50, 4534-4544.

    Debouk, R., Lafortune, S., Teneketzis, D., 2000. Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discret. Event Dyn. Syst. Theory Appl. 10 (1–2), 33–86.

    Gascard, E., Simeu-Abazi, Z., 2013. Modular Modeling for the Diagnostic of Complex Discrete-Event Systems. IEEE Transactions on Automation Science and Engineering 10(4), 1101-1123.

    Ghosh, K., Srinivasan, R., 2011. Immune-System-Inspired Approach to Process Monitoring and Fault Diagnosis. Ind. Eng. Chem. Res. 50, 4249-4268.

    Gomes Cabral, F., Moreira, M. V., Diene, O., & Basilio, J. C. 2015. A Petri Net Diagnoser for Discrete Event Systems Modeled by Finite State Automata. IEEE Transactions on Automatic Control 60(1), 59-71.

    Hashizume, S., Yajima, T., Ito, T., Onogi, K., 2004. Synthesis of operating procedures and procedural controllers for batch processes based on Petri nets. Journal of the Chinese Institute of Chemical Engineers 35, 363-369.

    Kang, A., Chang, C. T., 2014. Automata generated test plans for fault diagnosis in sequential material-and energy-transfer operations. Chem. Eng. Sci. 113, 101-115.

    Lee, J.M., Yoo, C.K., Lee, I.B., 2004. Fault detection of batch processes using multiway kernel principal component analysis. Computers & Chemical Engineering 28 (9), 1837-1847.

    Li, J. H., Chang, C. T., Jiang, D., 2014. Systematic Generation of Cyclic Operating Procedures Based on Timed Automata. Chem. Eng. Res. Des. 92, 139 - 155.

    Malik, R., Fabian, M., Akesson, K., 2011. Modelling Large-Scale Discrete-Event Systems Using Modules, Aliases, and Extended Finite-State Automata. IFAC Proceedings Volumes. 18th IFAC World Congress.18, 7000-7005.

    Nomikos, P., MacGregor, J.F., 1994. Monitoring batch processes using multiway principal component analysis. AIChE J. 40 (8), 1361-1375.

    Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC charts for monitoring batch processes. Technometrics 37 (1), 41-59.

    Pierri, F., Paviglianiti, G., Caccavale, F., Mattei, M., 2008. Observer-based sensor fault detection and isolation for chemical batch reactors. Engineering Applications of Artificial Intelligence 21 (8), 1204–1206.
    Qiu, W.B., Kumar, R., 2006. Decentralized failure diagnosis of discrete event system. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 36 (3), 384-395.

    Ricker, L., Lafortune, S., Genc, S., 2006. Desuma: A tool integrating GIDDES and UMDES. Software tools, 8th international workshop on discrete-event systems.

    Ruiz, D., Canton, J., Nougues, J.M., Espuna, A., Puigjaner, L., 2001a. On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants. Computers & Chemical Engineering 25 (4–6), 829–837.

    Ruiz, D., Nougues, J.M., Calderon, Z., Espuna, A., Puigjaner, L., 2001b. Neural network based framework for fault diagnosis in batch chemical plants. Computers & Chemical Engineering 24 (2–7), 777–784.

    Undey, C., Ertunc, S., Cinar, A., 2003. Online batch fed-batch process performance monitoring, quality prediction, and variable contribution analysis for diagnosis. Ind. Eng. Chem. Res. 42 (20), 4645-4658.

    Yeh, M.L., Chang, C.T., 2011. An Automaton-Based Approach to Evaluate and Improve Online Diagnostic Schemes for Multi-Failure Scenarios in Batch Processes. Chem. Eng. Res. Des 89, 2652-2666.

    Yeh, M.L., Chang, C.T., 2012. An automata-based approach to synthesize untimed operating procedures in batch chemical processes. Korean J. Chem. Eng. 29, 583-594.

    Zad, S.H., Kwong, R.H., Wonham, W.M., 2003. Fault diagnosis in discrete-event systems: framework and model reduction. IEEE Trans. Autom. Control 48 (7), 1199-1204.

    Zhao, C., 2014. Quality-relevant fault diagnosis with concurrent phase partition and analysis of relative changes for multiphase batch processes. AIChE Journal 60(6), 2048-2062.

    下載圖示 校內:2017-08-10公開
    校外:2020-08-10公開
    QR CODE