| 研究生: |
張君豪 Chang, Jun-Hao |
|---|---|
| 論文名稱: |
量子點與量子線耦合裝置中集體自旋相之操控研究 Manipulation of collective spin phases in a coupled dot-wire device |
| 指導教授: |
陳則銘
Chen, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 量子線 、量子點 、束縛電子態 、束縛自旋態 |
| 外文關鍵詞: | quantum wire, quantum dot, bound state, bound spin |
| 相關次數: | 點閱:39 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於製程技術的先進發展,人們得以實現低維度系統的量子元件,並藉此進入到量子力學的世界。在低維度的量子元件中,我們可以觀測到量子化的電導平台,並能進一步去研究由於電子與電子交互作用產生的各種多體效應。
自旋作為電子的其中一項自由度,能夠攜帶資訊並因此發展出了量子傳輸元件的新領域。如今,人們可以把電子限制在一個非常小的空間裡並精確的操控電子的自旋。像這樣被限制在局部的電子,是自旋量子計算的基礎,也已經在量子點元件中被密集的研究過。令人驚訝的是,在最近的研究中發現了量子線裡有近似近藤效應的行為,這暗指了在開放系統中可能存在著被束縛的自旋態。然而,這樣的束縛態能否存在於一維通道中仍然無法定論。
在這篇論文裡,描述了一系列用來探測量子線中束縛電子態的實驗。我們的元件主要由兩層不同的閘設計所組成,下層為標準的量子點接觸,讓我們可以用電位限制的方式來製造出一維的通道,而上層則是用來產生類似於量子點的額外電位限制,目的是用來控制量子線中與自旋相關的現象。藉由觀察到庫倫阻塞效應與零偏壓異常現象,我們獲得了量子線中確實存在著束縛電子態的證據。此外,我們也發現與近藤效應相關的行為以及0.25平台皆會被額外產生的電子限制所影響。我們的結果給予了實驗上研究開放系統中束縛電子態的一個可能性,並且提供了可行的方法來實現自旋量子電腦。
Thanks to the advances of the fabrication techniques, the realization of quantum devices in low-dimensional system led us into the world of quantum mechanics. In low-dimensional quantum devices, we can observe quantized conductance plateaus and further study various many-body effects driven by electron-electron interactions.
Spin, as a degree of freedom of electrons, is capable of carrying information and thus develops a new area for devices in quantum transport. Nowadays, people are able to confine electrons within a small space to precisely manipulate the spin of the electrons. Such a localized spin is the basis of spin-based quantum computing and has been intensively investigated in quantum dot devices. Surprisingly, recent researches have found Kondo-like behavior in quantum wires, implying the possibility of bound spins forming in the open systems. However, whether bound states can exist in a one-dimensional channel is still debated.
This thesis describes a series of experiments which explore the electrons transport through a bound spin within a quantum wire. Our device consists of two different gate designs lying in two layers separated by an oxide. The lower layer is a standard quantum point contact, which can potentially define a one-dimensional channel, while the upper layer is responsible for the dot-like confinement to control the spin-related phenomena of the one-dimensional electron transport. We obtain evidences of the existence of bound spins in a quantum wire by observing Coulomb blockade peaks and the zero bias anomaly. Also, the Kondo-like behavior and 0.25 plateaus are both affected by introducing the extra confinement. Our results provide a possible way for the experimental studies of the bound spins in the open systems and offer a feasible platform for spin-based quantum computers.
[1]
S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, “Low-Temperature Fate of the 0.7 Structure in a Point Contact: A Kondo-like Correlated State in an Open System,” Phys. Rev. Lett., 88, 226805, (2002).
[2]
D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, David Abusch-Magder, U. Meirav and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature, 391, 156–159, (1998).
[3]
Tomaž Rejec and Yigal Meir , “Magnetic impurity formation in quantum point contacts,” Nature, 442, pages900–903 (2006).
[4]
Kenji Hirose, Yigal Meir, and Ned S. Wingreen, “Local Moment Formation in Quantum Point Contacts,” Phys. Rev. Lett., 90, 026804, (2003).
[5]
S. Sasaki, S. Kang, K. Kitagawa, M. Yamaguchi, S. Miyashita, T. Maruyama, H. Tamura, T. Akazaki, Y. Hirayama, and H. Takayanagi, “Nonlocal control of the Kondo effect in a double quantum dot–quantum wire coupled system,” Phys. Rev. B, 73, 161303, (2006).
[6]
T.M. Chen, “T.M. Chen PHD thesis”.
[7]
Henk van Houten, Carlo Beenakker, “Quantum Point Contacts,” Physics Today, 49, 7, 22 (1996).
[8]
L. I. Glazman and A. V. Khaettskii, “An explicit model for a quantum channel in 2DEG,” Europhys. Lett., 9, 263 (1989).
[9]
L Martin-Moreno, J T Nicholls, N K Patel and M Pepper, “Non-linear conductance of a saddle-point constriction,” J. Phys.: Cond. Matt., 4, 1323 (1992).
[10]
Professor Patrick A. Lee, Dr. Akira Furusaki, Dr. Konstantin Matveev, “Coulomb Blockade In Single And Double Quantum Dots”.
[11]
L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, S. Tarucha, “Excitation Spectra of Circular, Few-Electron Quantum Dots,” Science, 278, 1788-1792 (1997).
[12]
J. Kondo, Prog. Theor., “Resistance Minimum in Dilute Magnetic Alloys,” Phys., 32, 37-49 (1964).
[13]
Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P., "A tunable kondo effect in quantum dots," Science, 281, 540–544 (1998).
[14]
T.-M.Chen, A.C.Graham, M.Pepper, I.Farrer and D.A.Ritchie, “Spontaneous spin polarisation in one dimension under finite DC-bias,” Physica E., 40, 1295 (2008).
[15]
T.-M.Chen, A.C.Graham, M.Pepper, I.Farrer and D.A.Ritchie, “Bias-controlled spin polarization in quantum wires,” Appl. Phys. Lett., 93, 032102 (2008).
校內:2024-07-30公開