簡易檢索 / 詳目顯示

研究生: 葉懌泰
Yeh, Yee-Tai
論文名稱: 從浮現觀點探討生手應用參數式設計的可能
Emergence in Parametric Design: A Study on Novice Designers’ Behavior When Employing Parametric Design Tools
指導教授: 簡聖芬
Chien, Sheng-Fen Nik
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 148
中文關鍵詞: 參數式設計浮現非預期產出生手口語原案分析
外文關鍵詞: parametric design, emergence, unexpected output, novice, protocol analysis
相關次數: 點閱:209下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 參數式設計是現今電腦輔助建築設計的趨勢之一,儘管國外建築領域已出現許多具有創造性的成果作品,但對於參數式設計過程的創造性,討論卻有限。而國內參數式設計的發展,目前仍在起步階段,參數式設計的使用者絕多數都是生手(novice),難以探討現有參數式設計成果的創造性價值。但在參數式設計過程中,非預期產出的浮現(emergence),卻具有刺激設計者感知,產生新認知的可能。特別對於生手來說,能擴大對參數模型建構方式或效果的新認知,雖然無法即時應用發展,卻是種創造性過程。因此本研究透過對於創造性與參數式設計的了解,來探討生手應用參數式設計的非預期產出,與設計創造性過程的關係,期望為對於參數式設計感興趣的設計者,提供一個探索的途徑與動力。
    生手在進行參數式設計的過程中,出現的非預期產出,具有引發其新想法浮現的可能。參數式設計的非預期產出,起因於複雜變量與錯綜連結。複雜變量的產生來自於,生手在建構參數模型時,對於數學幾何的認知不足。而錯綜連結的產生則來自於,生手建構參數模型時,對於電腦程式的認知不足。因此在參數模型調整時,模型的變化結果,超出生手當初建構模型的認知範圍,而使其感知到更多模型建構與變化的可能。
    本研究透過口語原案分析(verbal protocol analysis),以參數式設計訓練在五年以下的生手,進行參數式設計、非參數式電腦輔助設計以及手繪的設計實驗,探討參數式設計與傳統工具不同之處與潛力。結果發現三種設計過程中,都具有非預期產出,其中參數式設計引發之非預期產出次數最頻繁,且傾向引發設計者對於問題的重新探討。雖然參數式設計過程中多數的非預期產出,並沒有被受測者採納進而發展,但仍擴大設計者對於參數式設計操作的認知。
    從實驗過程中非預期產出多次導致設計進行膠著的情況來看,目前參數式設計的訓練,對於能夠得心應手地操作設計來說是不夠的。一般而言,設計越是熟練的專家,就越懂得去探索設計的問題,理解設計問題的構成關鍵,了解可以有哪些模型建構方式,以及各個模型能探索的範圍。後續研究宜探討參數式設計專家的設計行為,以對其成果的創造性有進一步理解。而參數式設計能引發設計者重新探討設計問題的特色,顯示參數式設計具有能幫助生手自我學習的優點,也是未來研究值得探索參數式設計工具的教學功效。

    Parametric design is a recent trend in computer-aided architectural design. Although, around the world, there are many amazing buildings achieved through parametric design methods, the discussions about the creative process in parametric design is limited. Using parametric design methods, architects can rapidly generate design alternatives, which in turn may promote reflections and re-examinations of design problems. This process may help novice designers to broaden their understanding of design problems and foster their creativity. This research explores the relationship between unexpected outputs generated through parametric design tools and the design creative process.
    For a novice designer, unexpected outputs bring possibilities of new ideas. Unexpected outputs are caused by complex parameters and mistaken links between input and output data. Complex-parameter induced unexpected outputs are mainly resulted from the lack of understanding in computer programming. Mistaken-link induced unexpected outputs are mainly resulted from the lack of understanding in Mathematics and Geometry.
    This research conducted empirical studies to observe how novice designers behave while encountering unexpected outputs using various kinds of design tools. In total, three participants, each of which performed three design tasks with tools of parametric design software, non-parametric design software or sketches with pen and pencil. The results through protocol analysis showed that unexpected outputs occurred in all design experiments. Participants using parametric tools tend to redefine design problems more often than using the other two kinds of tools. The space of design solutions was expanded even though most unexpected outputs were not adopted for further design development.
    It has been observed in the design experiments that unexpected outputs hindered the design process, even when the designer is familiar with the design tool. An experienced designer may overcome such hindrances with systematical explorations of design problems and alternatives. Therefore, understanding how experienced designers behave while employing parametric design tools is a key future research. In addition, if parametric tools may promote designers’ reflections on design problems, these tools may help novice designers to advance their design capabilities. Therefore, employing parametric design tools as design teaching/learning tools may warrant future research as well.

    Chapter 1 緒論 1 1.1 研究背景與動機 1 1.2 研究議題與目的 2 1.3 研究方法 3 1.4 論文架構 3 Chapter 2 浮現與創造性 5 2.1 創造性的設計 5 2.1.1 創造性的設計過程 6 2.1.2 發散性思考 7 2.2 電腦輔助設計與創造性 7 2.2.1 浮現 7 2.2.2 原創性與價值 8 2.3 小結 8 Chapter 3 參數式設計 9 3.1 參數式設計的概念 9 3.1.1 變量 9 3.1.2 連結 10 3.2 參數式設計的優點 12 3.2.1 連動結構 12 3.2.2 資料關聯 13 3.3 參數式設計的限制 13 3.3.1 拓樸關係 14 3.3.2 樹狀結構 14 3.4 參數模型的建構 15 3.4.1 構思 15 3.4.2 建構 16 3.4.3 調整 16 3.5 參數模型的非預期產出 16 3.5.1 龐大的資料結構 17 3.5.2 複雜變量 17 3.5.3 錯綜連結 18 3.5.4 非預期產出所帶來的創造性 19 3.6 小結 20 Chapter 4 設計實驗 21 4.1 實驗假設 21 4.2 實驗設計 22 4.2.1 設計題目 22 4.2.2 原始資料整理 23 4.2.3 實驗程序 25 4.3 資料分析 25 4.3.1 發散性思考頻率計算 26 4.3.2 發散性思考流程圖 26 4.3.3 草圖與正圖比較 27 4.4 實驗結果 27 4.4.1 假設驗證 27 4.4.2 綜觀結果 30 4.4.3 非預期產出的結果 31 4.4.4 討論 32 4.5 小結 32 Chapter 5 結論 33 5.1. 研究成果 33 5.1.1 參數式設計生手的創造性過程 33 5.1.2 參數式設計的特性與方法 34 5.2. 研究限制 34 5.3 後續研究 34 參考文獻 36 附錄 39 附錄1 設計題目 39 附錄2 逐字稿 41 附錄3 發散性思考變化分析 142 附錄4 設計結果 145

    Brophy, D. R. (2001). Comparing the Attributes, Activities, and Performance of Divergent, Convergent, and Combination Thinkers. Creativity Research Journal, 13(3), 439-455.
    Cross, N. (2001). Design Cognition: Results From Protocol And Other Empirical Studies Of Design Activity. In C. Eastman, W. Newstatter & M. McCracken (Eds.), Design Knowing and Learning: Cognition in Design Education (pp. 79-103). Oxford, UK: Elsevier.
    Csikszentmihalyi, M. (1996). Creativity: Flow and The Psychology of Discovery and Invention. New York, NY: Harper Collins Publishers.
    Davidson, S. (2011). Grasshopper. Retrieved 3/28/2011, from http://www.grasshopper3d.com
    Fischer, G. (2007). Meta-design: expanding boundaries and redistributing control in design. Paper presented at the Proceedings of the 11th IFIP TC 13 International Conference on Human-computer interaction, Rio de Janeiro, Brazil, 9/10-14.
    Gane, V. (2004). Parametric Design - A Paradigm Shift? Unpublished Master Thesis, MIT, Department of Architecture, Cambridge, Mass.
    Gero, J. (1990). Design Prototypes: A Knowledge Representation Schema for Design. AI Magazine, 11(4), 26-36.
    Giaccardi, E. (2005). Metadesign as an Emergent Design Culture. Leonardo, 38(4), 342-349.
    Guilford, J. P. (1973). A Psychometric Approach to Creativity. In M. Bloomberg (Ed.), Creativity: Theory and Research (pp. 229-246). New Haven, Conn: College & University Press.
    Guttman, A. (1984). R-trees: A Dynamic Index Structure for Spatial Searching. Paper presented at ACM SIGMOD International Conference, Boston, Mass.,6/18-21.
    Hernandez, C. R. B. (2006). Design Procedures: A Computational Framework for Parametric Design and Complex Shapes in Architecture. Unpublished Ph.D Dissertation, MIT, Department of Architecture, Cambridge, Mass.
    Janssen, P. (2006). A Generative Evolutionary Design Method. Digital Creativity, 17(1), 49-63.
    Khabazi, Z. (2010). Generative Algorithms Using Grasshopper. Retrieved 5/3/2011, from http://www.morphogenesism.com
    Khandwalla, P. N. (1993). An exploratory Investigation of Divergent Thinking Through Protocol Analysis. Creativity Research Journal, 6(3), 241-259.
    Kilian, A. (2006). Design Exploration through Bidirectional Modeling of Constraints. Unpublished Ph.D Dissertation, MIT, Department of Architecture, Cambridge, Mass.
    Knight, T., & Stiny, G. (2001). Classical and Non-classical Computation. Information Technology, 5(4), 355-372.
    Lawson, B. (2002). CAD and Creativity: Does the Computer Really Help? Leonardo, 35(3), 327-331.
    McLaughlin, S. (1993). Emergent Value in Creative Product: Some Implications for Creative Processes. In J. Gero & M. L. Maher (Eds.), Modeling Creativity and Knowledge-Based Creative Design (pp. 43-90). Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.
    Mitchell, W. (1993). A Computational View of Design Creativity. In J. Gero & M. L. Maher (Eds.), Modeling Creativity and Knowledge-Based Creative Design (pp. 25-42). Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.
    Molon, A. (2010). Egypt: Pharaos and Gods. Picture Photo of Wall Carvings Retrieved 10/5/2010, from http://www.molon.de/gallcerics/Egypt/Assuan/Philae/img.php?pic=5
    Monedero, J. (2000). Parametric Design: A Review and Some Experiences. Automation in Construction, 9(4), 369-377.
    Payne, A., & Issa, R. (2009). Grasshopper Primer. Retrieved 5/3/2011, from http://www.liftarchitects.com/journal/2009/3/25/the-grasshopper-primer-second-edition.html
    Rittle, H. (1988). The Reasoning of Designers (No. Arbeitspapier A-88-4), Stuttgart Germany: Institut für Grundlagen der Planung, Universität Stuttgart.
    Rosenman, M. A., & Gero, J. S. (1993). Creativity in Design Using a Design Prototype Approach. In J. Gero & M. L. Maher (Eds.), Modeling Creativity and Knowledge-Based Creative Design. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.
    Runco, M. A. (2004). Everyone Has Creative Potential. In R. J. Sternberg, E. L. Grigorenko & J. L. Singer (Eds.), Creativity From Potential to Realization (pp. 21-30). Washington, DC: American Psychological Association.
    Ruscio, J., Whitney, D. M., & Amabile, T. M. (2010). Looking Inside the Fishbowl of Creativity: Verbal and Behavioral Predictors of Creative Performance. Creativity Research Journal, 11(3), 243-263.
    Schodek, D., Bechthold, M., & Griggs, J. K. (2004). Digital Design & Manufacturing : CAD-CAM Applications in Architecture. Hoboken: John Wiley & Sons.
    Simon, H. (1981). The Science of Design The Sciences of The Artificial (pp. 129-159). Cambridge, Mass.: MIT Press.
    Stavric, M., & Marina, O. (2011). Parametric Modeling for Advanced Architecture. International Journal of Applied Mathmatics and Informatics, 5(1), 9-16.
    Suwa, M., Gero, J., & Purcell, T. (2006). Unexpected Discoveries and S-Invention of Design Requirements: Important Vehicles for A Design Process. Design Studies, 21(6), 539-567.
    Tang, H.-H., & Gero, J. S. (2001). Cognition-based CAAD: How CAAD Systems Can Support Conceptual Design. Paper presented at the CAAD Futures, Eindhoven, The Netherlands, 7/8-11.
    Thompson, D. A. W. (1961). On The Theory of Transformations, or The Comparison of Related Forms. In J. T. Bonner (Ed.), On Growth and Form. New York, NY: Cambridge University Press.
    Woodbury, R. (2010). Element of Parametric Design. New York, NY: Routledge.
    Xie, Y. M., Felicetti, P., & Tang, J. W. (2005). Form Finding for Complex Structures Using Evolutionary Structural Optimization Method. Design Studies, 26(1), 55-72.
    Yu, C. (2009). Parametric Architecture: Performative/Responsive Assembly Components. Unpublished Master Thesis, MIT, Department of Architecture, Cambridge, Mass.
    邱茂林. (2003). 數位建築發展. 台北: 田園城市文化事業有限公司.
    邱浩修. (2010). 3 Grasshopper Projects to Share. Retrieved 10/5/2010, from http://blog.xuite.net/ironbar2k/digifab/28027273

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE