| 研究生: |
黃冠榮 Huang, Kuan-Rong |
|---|---|
| 論文名稱: |
斑馬魚磷脂醯絲胺酸受器於骨骼發育過程中的影響 Effect of Zebrafish (Danio rerio) Phosphatidylserine Receptor on skeleton development |
| 指導教授: |
洪健睿
Hong, Jiann-Ruey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 磷脂醯絲胺酸受器 、基因轉殖 、YY-1 、嗎啉寡聚核苷酸 、Calcein Immersion 、啟動子 、骨骼 、綠螢光蛋白 、斑馬魚 |
| 外文關鍵詞: | YY-1, zebrafish, PSR, morpholinos, Calcein Immersion, promoter, skeleton development, EGFP |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來研究指出,磷脂醯絲胺酸受體 (Phosphatidylserine Receptor, PSR) 具有辨識凋亡小體 (apoptotic body) 的功能與吞噬的能力並且和早期胚胎發育有關,然而是否有影響到個別器官(如骨骼)發育的研究仍尚未清楚。
在實驗室所建構的PSRP-4K-EGFP 基因轉殖魚中,我們首度發現於受精後 14 天後的幼魚骨骼有綠色螢光蛋白的表現,並在以PSR 啟動子序列所預測的可能調控因子之中,發現有與骨骼發育相關的轉錄因子YY-1,於是進一步推測磷脂醯絲胺酸受體可能與斑馬魚的骨骼發育有關。
因此本篇論文先以PSR基因的嗎啉寡聚核苷酸(morpholinos)將PSR基因 knock down後,來觀察斑馬魚的表現,發現除了影響到胚胎的早期發育之外,再以Calcein immersion的方式進行成魚骨骼染色後,更觀察到斑馬魚的中軸骨在生成上出現延遲、不全的現象,骨骼發育受阻現象。
接著進一步利用與骨骼發育相關的轉錄因子YY-1的morpholinos 來knock down YY-1,抽取胚胎RNA,以反轉錄的聚合酶鍊式擴增(RT-PCR)及進行胚胎mRNA全覆式原位雜交實驗(whole mount in situ hybridization)的方式來偵測PSR基因的變化量。結果發現骨骼發育相關轉錄因子YY-1會影響到PSR 基因的表現量,藉而調控PSR基因影響斑馬魚的骨骼發育。
本論文的研究發現 PSR基因除了對於胚胎早期發育扮演重要角色,而且對後期骨骼的發育也有重要影響。
The general functions of phosphatidylserine receptor (PSR) are recognizing the apoptotic bodies for clearance of corpse cells and regulating the normal embryonic development. But which organism that can be regulated by the gene is still unclear. In this thesis, our lab cloned and constructed the PSR promoter fused with green fluoresce protein for directly monitoring the temporal and spatial profile of PSR expression during zebrafish embryogenesis. From the PSRP-4K-EGFP transgenic zebrafish fish line (F1), we found that the PSR gene can express in skeleton at the 14 dpf larval stage, dramatically.
In this study with loss-of-function approach for knockdown of PSR by antisense RNA, we also found that skeleton formation delayed and revealed incomplete development of skeleton by calcium immersion.
Among all of the possible regulatory factors predicted by PSR promoter sequence, we found a transcription factor, YY-1, which involved in skeleton development. Therefore, we assumed that PSR may play a new role on skeleton development. Furthermore, we tried to use morpholinos to knock down transcription factor, YY-1, which can regulate skeletogenesis. In the results, we detected the expression of PSR gene by whole mount in situ hybridization and RT-PCR analysis. This phenomenon showed that YY-1 may act on the PSR promoter to regulate the skeleton development.
In conclusion, we discovered the PSR was not only important to embryogenesis, but also involved in skeletogenesis and this finding may provide new insight into PSR functions.
白植友,斑馬魚磷脂醯絲胺酸受器啟動子之選殖與功能分析。成功大學生物科技研究所碩士論文,台南,2007。
Arur S, Uche UE, Rezaui MF, Scranton V, Cowan AE, Mohler W, and Han DK. Annexin I is an endogenous ligand that mediates
apoptotic cell engulfment. Dev. Cell 4, 587-598. (2003)
Basu A, Park K, Atchison ML, Carter RS, and Avadhani NG. Identification of a transcriptional initiator element in the cytochrome c oxidase subunit Vb promoter which binds to transcription factor NF-E1 (YY1, delta) and Sp1.J. Biol. Chem. 258: 4188-4196. (1993)
Becker KG, Jedlicka P, Templeton NS, Liotta L, and Ozato K. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that bindsthe regulatory regions of many viral and cellular genes. Gene 150: 259-266. (1994)
Bose J, Gruber AD, Helming L, Schiebe S, Wegener I, Hafner M, Beales M, Kontgen F, and Leneling A. The Phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J.Biol. 3: 15. (2004)
Bretscher MS. Asymmetrical lipid bilayer structure for biological
membrane. Nature Bio. 236: 11-12. (1972)
Brown DG, Sun XM, and Cohen GM. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior internucleosomal fragmentation. J. Biol. Chem. 268: 3037-3039. (1993)
Chan WY, Liu QR, Borjigin J, Busch H, Rennert OM, Tease LA, and Chan PK. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Bioch. 28: 1033-1039. (1989)
Chung S, Gumienny TL, Haengartner MO, and Driscoll M. A common set of engulfment genes medistes removal of both apoptotic and necrotic cell corpses in C. elegans. Nat. Cell Biol. 2, 931-937. (2000)
Cikala M, Alexandrova O, David CN, Proschel M, Stiening B, Cramer P, and Bottger A. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity. BMC Cell Biol.5:26. (2004)
Cole L. K. and Ross L.S. Apoptosis in the developing Zebrafish
embryo. Dev. biol. 240: 123-142. (2001)
Du SJ, Frenkel V, Kindschi G, and Zohar Y. Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev. Biol. 238(2): 239-246. (2001)
Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, and Henson PM. Different populations of macrophages use either thevitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149: 4029-4035. (1992)
Fadok VA, Laszlo DJ, Noble PW, Weinstein L, Riches DW, and Henson PM. Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J. Immunol. 151: 4274-4285. (1993)
Fadok VA , Warner ML , Bratton DL, and Henson PM. CD36 is
required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (v3). J.
Immunol. 161: 6250-6257. (1998a)
Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, and Henson
PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine
mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101: 890-898. (1998b)
Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, and Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, 405:85-90. (2000)
Flanagan JR, Becker KG, Ennist DL, Gleason SL, Driggers PH, Levi BZ, Appella E, and Ozato K. Cloning of a negative transcription factor
that binds to the upstream conserved region of Moloney murine leukemia virus. Mol. Cell Biol. 12: 38-44. (1992)
Galvin KM, Shi Y. Multiple mechanisms of transcriptional repression by YY1. Mol. Cell Biol. 17: 3723-3732. (1997)
Guido K, Bruno D, and Michele RR. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60: 619–42. (1998)
Hariharan N, Kelley DE, and Perry RP. Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zinc finger protein. Natl. Acad. Sci. USA 88: 9799-9803. (1991)
Hoffmann PR, Kench JA, Vondracek A, Kruk E, Daleke DL, Jordan M,
Marrack P, Henson PM, and Fadok VA. Interaction between
phosphatidylserine and the phosphatidylserine receptor inhibits immune
responses in vivo. J. Immunol. 174(3): 1393-1404. (2005)
Hong JR, Lin GH, Lin CJ, Wang WP, Lee CC, Lin TL, and Wu JL. Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish. Development,131(21): 5417-5427. (2004)
Hughes J, Liu Y, Van Damme J, and Savill J. Human glomerular mesangial cell phagocytosis of apoptotic neutrophils: mediation by a novel CD36-independent vitronectin receptor/thrombospondin recognition that is uncoupled from chemokine secretion. J. Immunol. 158: 4389-4397. (1997)
Hyde-DeRuyscher RP, Jennings E, and Shenk T. DNA binding sites for the transcriptional activator/repressor YY1. Nucleic Acids Res. 23: 4457-4465. (1995)
Kerr JF, Wyllie AH, and Currie AR. Apoptosis: a basic biological
phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer.26(4): 239-257. (1972)
Kimmel CB, Halpern ME, Thisse C, Ho RK , Thisse B, Riggleman B, Trevarrow B,and Weinberg ES. Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants
Development. 121, 4257-4264. (1995)
Krieser RJ, Moore FE, Dresnek D, Pellock BJ, Patel R, Huang A, Brachmann C, and White K. The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis. Development, 134:2407-2414. (2007)
Kurisaki K, Kurisaki A, Valcourt U, Terentiev AA, Pardali K, Ten Dijke P, Heldin CH, Ericsson J, and Moustakas A. Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation. Mol. Cell Biol. 23(13): 4494-4451. (2003)
Kunisaki Y, Masuko S, Noda M, Inayoshi A, Sanui T, Harada M, Sasazuki T, and Fukui Y. Defective fetal liver erythropoiesis and T lymphopoiesis in mice lacking the phosphatidylserine receptor. Blood, 103: 3362-3364. (2004)
Kwon HJ, Chung HM. Yin Yang 1, a vertebrate polycomb group gene, regulates antero-posterior neural patterning. Biochem Biophys Res Commun. 306(4):1008-13. (2003)
Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, and Baksh S. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717-730. (2003)
Lee JS, Galvin KM, See RH, Eckner R, Livingston D, Moran E, and Shi Y. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated rotein p300. Genes Devl. 9: 1188-1198. (1995)
Li MO, Sarkisian MR, Mehal WZ, Rakic P,abd Flavell RA.
Phosphatidylserine receptor is required for clearance of apoptotic cells.
Science, 302: 1560-1563. (2003)
Lorente M, Pe´rez C, Sa´nchez C, Donohoe M , Shi Y, and Vidal M. Homeotic transformations of the axial skeleton of YY1 mutant mice and genetic interaction with the Polycomb group gene Ring1/Ring1A. Dev. Mec.123 : 312–320 (2006)
Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC,
LaFace DM, and Green DR. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182:1545-1556. (1995)
McDonald P P, Fadok V A, Bratton D L, and Henson P M.
Transcriptional and translational regulation of inflammatory mediator
production by endogenous TGFb in macrophages that have ingested apoptotic cells. J. Immunol. 163(11): 6164-6172. (1999)
Meagher LC, Savill JS, Baker A, Fuller RW, and Haslett C.
Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J. Leukocyte Biol. 52:269-273. (1992)
Moller W, and Amons R. Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 186: 1-7. (1985)
Patricia L, Crotwell, and Paula M. Gene Expression Patterns Underlying Proximal–Distal Skeletal Segmentation in Late-Stage Zebrafish, Danio rerio.Dev.Dyn. 236: 3111–3128. (2007)
Samali A, Gorman AM and Cotter G. Apoptosis-he story so far Experientia. 52(10-11): 933-941. (1996)
Schlegel R A, and Williamson P. Phosphatidylserine, a death knell. Cell Death Differ. 8: 551–563. (2001)
See JM, Grinspan JB. Sending mixed signals: bone morphogenetic protein in myelination and demyelination. J Neuropathol Exp Neurol . 68(6):595-604. ( 2009)
Seto E, Shi Y, and Shenk T. YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature 354: 241-245. (1991)
Shi Y, Seto E, Chang LS, and Shenk T. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67: 377-388. (1991)
Shi Y, Lee JS, and Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim. Biophys. Acta 1332: F49-F66. (1997)
Shih C. New insights into intramembranous and endochondral bone formation. J Taiwanese Osteop Assoc. 7,6-8. (2002)
Sims N, and Baron C. Bone cells and their function. In “Skeletal Growth Factors” (E. Canalis, Ed.), pp. 1–16. (2000)
Shrivastava A, and Calame K. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res.22: 5151-5155. (1994)
Stern M, Savill J, and Haslett C. Human monocyte-derived
macrophage phagocytosis of senescent eosinophils undergoing apoptosis:
mediation by v 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149: 911-921. (1996)
Uchida D, Yamashita M, Kitano T, and Iguchi T. Oocyte apoptosis during the transition from ovay-like tissue to testes during sex differentiation of juvenile Zebrafish. J. Exp. Bio. (Pt 6): 711-718. (2002)
Usheva A, and Shenk T. TATA-binding protein-independent initiation: YY1,TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 76: 1115-1121. (1994)
Van den Eijnde SM, Boshart L, Baehrecke EH, De Zeeuw CI,
Reutelingsperger CP, and Vermeij-Keers C. Phosphatidylserine
exposure by apoptotic cells is phylogenetically conserved. Apoptosis 3: 9-16. (1998)
Verhoven B, Schlegel RA, and Williamson P. Mechanisms of
phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182: 1597-1601. (1995)
Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, and Girkontaite I.
Immunosuppressive effects of apoptotic cells [letter]. Nature, 390:
350-351. (1997)
Wang X, Wu YC, Fadok VA, Lee MC, Gengyo-Ando K, Cheng LC, Ledwich D, Hsu PK, Chen JY, Chou BK, Henson P, Mitani S, and Xue D. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science, 302: 1563-1566. (2003)
Williamson P, Schlegel R. A. Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta 1585: 53–63. (2002)
Yang WM, Inouye C, Zeng Y, Bearss D, and Seto E. Transcriptional repression by YY1 is mediated by interactinwith a mammalian homolog of the yeast global regulator RPD3. Natl. Acad. Sci. USA .93: 12845-12850. (1996)