簡易檢索 / 詳目顯示

研究生: 林河川
Lin, Ho-Chuan
論文名稱: 貧油預混甲烷噴流火焰組平行交互作用之深入研究
A Comprehensive Study of Multiple Interactive Parallel Premixed Methane Slot Jet Flames on Lean Combustion
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 139
中文關鍵詞: 負壓式側向對衝及跨流線的燃燒交互作用火焰階梯火焰正壓式側向對衝噴流火焰貧油燃燒側向對衝停滯流
外文關鍵詞: sub-limit lean combustion, lateral impingement, stagnation flow, interactive flames, jet flame, cascade flames, cross streamline combustion., negative lateral impingement
相關次數: 點閱:230下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是利用GRI-Mech 3.0甲烷化學反應機構及ESI-CFD v.2004數值方法對交互作用下的噴流火焰組進行一系列有關火焰當量比、火焰間距與火焰穩定的機制之定性與定量研究。經由改變火焰間距及火焰組數之定性觀察與現象分析,本文提出一套有關火焰交互作用下其延伸貧油火焰穩定之機制,並且配合相關火焰外型、長度的拍照、熱電偶測溫、流場雷射實驗量測所得之定量化數據,以驗證數值計算之結果。
    雙噴流火焰在間距(L)槽寬(d)比移近到小於四倍以下(L/d < 4)時,開始產生外觀上相互推擠的交互作用,本文利用數值方法仔細分析其間流場、溫度場及化學物質之分合及運動,探討火焰如何作交互作用及對穩定機制之貢獻。兩噴嘴間的流場由四倍槽寬間距(L = 4d)的引導流,轉移成三倍槽寬間距(L = 3d)的局部渦流場,及最後成形兩倍槽寬間距(L = 2d)的全面迴流,且側向對衝流場強度由輕微、明顯、到激烈,隨噴嘴槽寬間距比的縮小而逐步加強。兩倍槽寬間距(L = 2d)的條件下,兩噴嘴間全面迴流的流場是由於下游強烈的對衝流場且形成停滯點,造成火焰排出的後火焰無法完全由下游宣洩,且向上游回堵,一支向上,另一支向下所造成的。同時燃燒的熱量也不易有效順暢地隨流場快速排出,只能向側面已轉彎的流場上游傳導造成火焰向上游延燒,形成有側移傾角的火焰外觀。對衝流場可以同時降低噴嘴出口的流速及後火焰的流速,降低流埸帶走熱量的速度,加上對稱軸原有的熱保溫效果,後火焰可以有較多的熱量向上游回傳,增加燃燒速度。更有利於波速較慢的貧油火焰波向上游趕上流場,降低可操作的貧油當量比的下限值。全面迴流為火焰基部帶來了延續燃燒所需要的溫度,並與噴嘴形成搜集化學中間產物的機構,加強火焰基部與噴嘴槽的貼著能力。
    固定為兩倍槽寬間距、當量比φ = 0.88 / 0.3 / 0.88的三噴流火焰組是不對稱的側向對衝火焰組。兩噴嘴間對衝的流場由φ = 0.88 / 0.7 / 0.88的全面迴流減弱為φ = 0.88 / 0.3 / 0.88的渦流場,側向對衝的停滯點由兩噴嘴間的中間位置往中間φ=0.3的弱火焰方向退縮。中間火焰的後火焰漸漸微弱,側向對衝的角色逐漸由中間噴嘴的未燃氣來代為執行。停滯點下游部份的外側後火焰流速比較快,以黏滯力拉著中間火焰的後火焰,使其加快脫離火焰面往下游流動。這是一種加速對流的效果,並不利於中間後火焰熱量的保持,會明顯降低火焰燃燒溫度。且由於火焰厚度的拉大,沿流線方向的溫度梯度減緩,降低向上游的熱傳導的能力。中間火焰的未燃氣雖然無法充分的由自己的後火焰來加熱,但由外側火焰提供的大量且高溫的後火焰是可靠且有效的熱量來源。對中間火焰而言,化學中間產物的穩駐機構可分為火焰基部及主火焰兩部份:中間火焰的基部可直接由側面吸收外側火焰的熱量及化學中間產物,做正壓式側向對衝燃燒。而中間火焰的主火焰是一種沿著等溫線的階梯式燃燒,由側面吸收外側後火焰的熱量,第一個階梯式燃燒是利用本火焰基部的化學中間產物,之後的階梯式燃燒,有互相做化學中間產物交換的機構,是一種跨流線的燃燒,也是一種為負壓式側向對衝燃燒。
    交互作用次極限貧油火焰的研究受限於並存的高低溫燃燒,強烈對比造成光學量測的困難,至今所知有限。數值分析是目前最有效的方法之一,且有助於新實驗方法的設計。
    本文成功的解析了貧油、超貧油交互作用噴流火焰燃燒的穩駐特性以及其燃燒過程中重要化學步驟,對噴流火焰組的實際應用以及燃燒器的設計將有莫大的幫助。

    This study aims to investigate interactive parallel lean and sub-limit lean premixed methane-air flames issued from two or three rectangular slot burners with variable jet spacing, equivalence ratio and burner exit speed. The twin-jet flames consist of two identical slot flames which are called symmetrical interactive flames. The triple-jet flames, with a same jet spacing, consist of two identical slot flames in outboard side on lean combustion and one center flame on sub-limit lean combustion in the center. The outboard and center jet flames form non-symmetrical interactive flames. The flowfield and combustion chemical reactions are predicted by detailed numerical simulation with Skeletal and GRI–Mech 3.0 reaction mechanisms. Numerical results such as velocity streamlines, temperature, flame height and flame shape are validated with those obtained by experimental particle image velocimetry (PIV) and flame measurements. When moved closer beyond a threshold jet spacing, twin-jet flames become interactive and both flames tilt outward in appearance. This symmetrical flame interaction provides a wider operation range. Numerical predictions found that there are three different interactive flow fields: entrainment, recirculation and reverse flows according to jet-to-jet spacing. At the reverse flow stage, a stagnating flowfield termed lateral impingement is generated along the symmetrical axis between the flames, which is similar but not identical to that found in the counterflow flames. Regardless of the extent of flame interaction or the degrees of flame tilting angle, the interacting postflame flowfield creates a restriction to slow down itself, reduces the convective heat to the down stream and increases the conductive heat transfer to the upstream unburned mixture. This is the main mechanism to enhance the flame stabilization, especially in lean conditions. The stabilization mechanism of the interactive twin-jet flames is also enhanced by other crucial factors such as low dissipation of heat, inter-change of chemical species between two flames, and import chemical species from main flame to burner rim.
    In contrast to the twin-jet flames, the triple flames, with jet spacing L/d = 2 and equivalence ratio of φ = 0.88 outboard and φ = 0.7 ~ 0.3 for inboard flame, can be classified as a non-symmetrical lateral impingement. The interactive postflame consists of one weak flow in the center and one strong flow in the outside. The interactive thermal field also combines one hot flow and one cold flow. It is verified that the sub-limit lean center flame is mainly sustained by the hot products of outboard lean flames. The strong outboard postflame twists the flow direction of center postflame in a sharp angel to the flame sheet. Usually the flow direction is nearly normal to the flame sheet. This twisted flame is called cascade flame. The cascade flame accommodates the slow flame speed of the sub-limit mixture, extents the residence time and allows the chemical species to perform the cross streamline combustion. The cascade flame is a kind of negative lateral impinged flame. The center flame base is supported by the outboard flame with the same method as the twin-jet flames. This sub-limit lean flame is mainly burnt through the path of HO2 / CH3O with branching reaction step of O2 + H-> O + OH. The experimental study of sub-limit lean combustion is difficult to conduct due to the strong contrast ratio between two non-symmetrical flames. Thus, the current numerical method is one of the feasible methods to study the sub-limit lean combustion.

    CONTENTS 誌謝 i 摘要 ii 第一章 簡介 v 第二章 研究方法與理論分析的結果 vi 第三章 數值結果與實驗數據比對驗證 viii 第四章 雙噴流火焰組的對稱交互作用 ix 第五章 三噴流火焰組的非對稱交互作用 x 第六章 結論 xii ABSTRACT xiv CONTENTS xvii LIST OF TABLES xxi LIST OF FIGURES xxii NOMENCLATURE xxvii CHAPTER I. Introduction 1 1.1 Background 1 1.2 Review of Lean Combustion 2 1.2.1 Stabilization Methods 2 1.2.2 Jet Array Flames 2 1.2.3 Studies of Counterflow Jet Flames 3 1.2.4 Hydrodynamic and Diffusion Influence on Flame Sheet 7 1.2.5 Study of Oxidation Pathway 8 1.3 Motivation and Objectives 9 1.3.1 Twin-Jet Flames 11 1.3.2 Triple-Jet Flames 11 1.4 Thesis Outline 13 II. Research Methods and Results of Theoretical Analysis 14 2.1 Numerical Simulation 14 2.1.1 The Full Set of Governing Equations 14 2.1.2 General Startup Conditions 15 2.1.3 Numerical Ignition 17 2.1.4 Grid Selection 18 2.2 Theoretical Analysis 19 2.2.1 Describing the Governing Equations 20 2.2.2 Approximation of Free Stream Boundary Condition 20 2.2.3 Integral Method and Leibitz’ Formula 22 2.2.4 Numerical Solution with Fortran Program 24 2.2.5 Approximation of Interactive Boundary Condition 25 2.2.6 Results and Summary 27 2.3 Experimental Methods 29 2.3.1 PIV 29 2.3.2 Temperature Measurement 30 2.3.3 Image Capture Device 32 III. Validations and Comparisons with Experimental Data 33 3.1 Simulation Result Validation of Single Flame 33 3.2 Results Comparisons of Twin-Jet Flames 33 3.2.1 Flame Shape 33 3.2.2 Flame Temperature 33 3.2.3 PIV Imaging 34 3.3 Results Comparisons of Triple-Jet Flames 34 3.3.1 Flame Shape 34 3.3.2 Flame Temperature 35 3.3.3 PIV Imaging 36 3.4 Summary 36 IV. Symmetrical Interaction of Twin-Jet Flames 38 4.1 Introduction 38 4.2 Experimental Data 38 4.2.1 Flame Shapes 39 4.2.2 Operational Ranges 40 4.3 Numerical Results 40 4.3.1 Flow Field 41 4.3.2 Thermal Temperature Field 42 4.3.3 Cross Section Cuts of Thermal and Hydrodynamic Fields 42 4.3.4 Forces on the Flame Sheet 43 4.3.5 Diffusion and Species import in Flame Base 46 4.4 Stabilization Mechanisms 48 4.4.1 Tender, Less Heat Loss and Fast Flame Speed 49 4.4.2 Burner Rim Wall Proximity Effect 50 4.4.3 Species Saving and Cross-shooting Effects 51 4.4.4 Adjustment of Reaction Routes 52 4.5 Summary 52 4.5.1 Lateral Impingement 52 4.5.2 Interactive Flames 53 V. Non-Symmetrical Interaction of Triple-Jet Flames 54 5.1 Introduction 54 5.2 Experimental Data 55 5.2.1 Flame Height versus Inboard Equivalence Ratio 55 5.2.2 Flame Liftoff at Set Back Conditions 56 5.2.3 Operation Ranges 56 5.3 Numerical Results 56 5.3.1 Non-symmetrical Flow Field 57 5.3.2 Hot and Cold Thermal Fields 59 5.3.3 Cross Section Cuts of Thermal and Hydrodynamic Fields 59 5.3.4 Negative Pressure Field 62 5.3.5 Forces to Twist the Flow Field 63 5.3.6 Diffusion Effect on the Cascade Flame 65 5.4 Sensitivity Analysis 66 5.4.1 Numerical Package 66 5.4.2 CHEMKIM Collection 3.7 Aurora Package 68 5.5 Stabilization Mechanisms 69 5.5.1 Positive Lateral Impingement and flame-attachable zone 69 5.5.2 Negative Lateral Impingement and cascade flame 70 5.5.3 Species Import and Species Exchange in the Center Flame 71 5.5.4 Adjustment of Reaction Routes 72 5.6 Summary 72 5.6.1 Non-symmetrical Lateral Impingement 72 5.6.2 What is the Sub-limit Lean Flame? 73 5.6.3 New definition of flame Interaction 74 VI. CLOSURE 75 6.1 Achievements 75 6.2 Conclusions Remarks 76 ACKNOWLEDGEMENTS 78 REFERENCES 79 TABLES 83 1 Sensitivity comparison list of reaction rate versus equivalence ratio 83 2 The first two production rates of major species at the point 3mm above the rim and = 0.4 84 3 The Sensitivity of reaction rate versus species concentration at the point 3mm above rim and at = 0.4 84 FIGURES 85 APPENDIX 129 1 Fortran Program of Theoretical Modeling 129 PUBLICATION LISTS 137 VITA 138 著作權聲明 139

    Can, M., Etemaglu, A.B. and Avci, A., 2002,“Experimental study of convective heat transfer under arrays of impinging air jets from slots and circular holes,”Heat and Mass Transfer, vol.38, pp.251-259.
    Chander, S., and Ray, A., 2007,“Heat transfer characteristic of three interacting methane/air flame jets impinging on a flat surface,”Intl. J. of Heat and Mass Transfer, vol.50, pp.640-653.
    Chander, S., and Ray, A.,2005,“Flame impingement heat transfer:A review,” Energy Conversion & Management, vol.46, pp.2803-2837.
    Chander, S., and Ray, A., 2006,“Influence of burner geometry on heat transfer characteristic of methane/air flame impinging on flat surface,” Experimental Heat Transfer, vol.19 pp.15-38.
    Chao, B. H., Egolfopoulos, F. N. and Law, C. K., 1997, "Structure and Propagation of Premixed Flame in Nozzle-Generated Counterflow," Combustion and Flame, Vol. 109, pp. 620-638.
    Chelliah, H. K., Bui-Pham, M., Seshadri, K. and Law, C. K, 1992, “Numerical Description of the Structure of Counterflow Heptane-Air Flames Using Detailed and Reduced Chemistry with Comparison to Experiment,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 851-857.
    Chen, Bi-Chian (Advisor: Prof. Yei-Chin Choa), 2007, “A study of the Characteristics of Sub-Limit Lean Flames by Mutual Interactions of Premixed Jet Flames,” M.S. Thesis, Institute of Aeronautics and Astronautics, National Chen-Kung Unive sity, Taiwan
    Chen, Chih-Peng (Advisor: Prof. Yei-Chin Choa), 2007, “Structure and Stabilization Mechanism of Microjet Methane Diffusion Flames,” Ph.D Thesis, Institute of Aeronautics and Astronautics, National Chen-Kung Unive sity, Taiwan
    Cheng, Z., Pitz, R.,and Wehrmeyer, J., 2002, “Opposed Jet Flames of Very Lean or Rich Premixed Propane-Air Reactants vs. Hot Products”, Proceeding of the 2002 Technical Meeting of the Central States Section of The Combustion Institute
    Cheng, Z., Pitz, R.,and Wehrmeyer, J., 2006, “Lean and ultralean strectched propane-air conterflow flames”, Combustiom and Flame, vol. 145, pp.647-662.
    Dong, L.L., Leung, C.W. and Cheung, C.S.,2004,“Heat transfer and wall pressure characteristic of a twin premixed butane/air flame jets,”Intl. J. of Heat and Mass Transfer, vol.47, pp.489-500.
    Dong , L.L., Leung, C.W. and Cheung, C.S.,2003“Heat transfer of a row of three butane/air flame jets impinging on a flat plate,” Intl. J. of Heat and Mass Transfer, vol.46, pp.113-125.
    Geers, L.F.G., Tummers, M.J., and Hanjalic, K., 2004,“Experimental investigation of impinging jet arrays,”Exp. in Fluids vol.36 ,pp.946-958.
    Guo, H., Smallwood, G.J., and Gülder, Ö.L., 2007, “The effect of reformate gas enrichment on extinction limits and NOX formation in counterflow CH4/air premixed flames,” Proceeding of the Combustion Institude, Vol. 31, pp. 1197-1204.
    Hawkes, E.R., and Chen, J.H., 2004,“Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames,”Combustion and Flames, vol.138, pp.242-258.
    Ho, Chun-Chin (Advisor: Prof. Yei-Chin Choa), 2006, “A study of muture Interaction of two Premixed Flame in Lean Combustion,” M.S. Thesis, Institute of Aeronautics and Astronautics, National Chen-Kung University, Taiwan
    Joannon, M. DE, Sabia, P., Tregrossi, A. and Cavaliere, A.,2004,“Dynamic behavior of methane oxidation in premixed flow reactor,”Combustion Science and Technology, vol.176 ,pp.769-783.
    Kaiser, C., Liu, J.-B. and Ronney, P. D., 2000, “Diffusive-Thermal Instability of Counterflow Flames at Low Lewis Number,” 38th Aerospace Sciences Meeting & Exhibit 10 – 13 January 2000 Reno, Nevada
    Kimura, I., and Ukawa, H., 1956, “Studies on the Bunsen Flames of Fuel-Rich Mixture,” 8th Symposium (Intlernational) on Combustion, The Combustion Institude, pp. 521-523.
    Koopman, R.N. and Sparrow, 1976,“Local and average transfer coefficients due to an impinging row of jets,”E.M., Intl. J. Heat and Mass Transfer, vol.19 ,pp.673-683.
    Lee, B.-J., Kim, J.-S. and Lee, S., 2004,“Enhancement of blowout limit by the interaction of multiple nonpremixed jet flames,”Combust. Science and Technology, vol.176, pp.482-497.
    Menon, R., and Gollahalli, S. R., 1985, “Multiple Jet Gas Flames in Still Air,” ASME, HTD Publ by ASME, New york, Vol. 45, pp.127-133.
    Menon, R., and Gollahalli, S. R., 1988, “Investigation of Interacting Multiple Jets in Cross Flow,” Combustion Science and Technology, Vol. 60, pp. 375-389.
    Najm, H. N., Valorani M., Goussis, D. A. and Creta, F., 2007, “Analysis of Methane-Air Edge Flame Structure,” 21st ICDERS July 23-27, Poitiers, France.
    Pelce, p. and Clavin, p., 1982,“Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames,” J . Fluid Mech. , vol. 124, pp. 219-237
    Ren, J.-Y. and Egolfopoulos, F.N. ,2002, “NOx Emission control of lean methane-air combustion with addition of methane reforming products,”Combustion Science and Technology, vol.174, pp.181-205.
    Roper, F. G. , 1979, “Laminar Diffusion Flame Sizes for Interacting Burners,” Combustion and Flame, Vol. 34, pp.19-27.
    San, J.-Y., and Lai, M.-D.,2001,“Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets,” Intl. J. Heat and Mass Transfer, vol.44, pp.3997-4007.
    Schuller, T., Durox, D. and Candel, S., 2003, “Self-induced combustion oscillstions of laminar premixed flames stabilized on annular burners,” Combustion and Flames, vol. 135, pp. 525-537.
    Seigo, K., Satoshi, H., Yoshito, U., Syuichi, M., and Katsuo, A., 2005, “Characteristics of combustion of Rich-Lean Flame Burner under Low Load Combustion,” 20th ICDERS, Canada.
    Singer, J. M., 1952, “Burning Velocity Measurements on Slot Burners; Comparison with Cylindrical Burner Determination,” 4th Symp. (International) on Combustion, the Combustion Institude, pp. 352-358.
    Sohrab, S. H., Ye, Z. Y. and Law, C. K., 1986, “Theory of Interactive Combustion of Counterflow Premixed Flames,” Combustion Science and Technology, Vol. 45, pp. 27-45.
    Sung, C. J., Liu, J. B. and Law, C. K. 1996, "On the Scalar Structure of Nonequidiffusive Premixed Flames in Counterflow," Combustion and Flame, Vol. 106, pp. 168-183.
    Sung, C. J. and Law, C. K., 2000, “Structural Sensitivity, Response, and Extinction of Diffusion and Premixed Flames in Oscillating Counterflow,” Combust. Flame, vol. 123 pp. 375-388.
    Vagelopoulos, C. M., Egolfopoulos, F. N. and Law, C. K.,1994, "Further Considerations on the Determination of Laminar Flame Speeds with the Counterflow Twin Flame Technique," Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1341-1347.
    Wu, J., Seyed-Yagoobi, J. and Page, R.H.,2001,“Heat transfer and combustion characteristic of an array of radical jet reattachment flames,”Combust. Flame, vol.125, pp.955-964.
    Zheng, X.L. and Law, C.K., 2004, “Ignition of premixed hydrogen/air by heated counterflow under reduced and elevated pressures,” Combust. Flame vol. 136, pp.168–179

    下載圖示 校內:立即公開
    校外:2009-07-14公開
    QR CODE