簡易檢索 / 詳目顯示

研究生: 林政賢
Lin, Zheng-Xian
論文名稱: 高效率載子注入之透明有機薄膜電晶體研究
High Efficiency Carrier Injection on Pentacene-based Transparent Organic Thin-Film Transistors with Fullerene (C60) Layers
指導教授: 王永和
Wang, Yeong-her
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 72
中文關鍵詞: 有機薄膜電晶體富勒烯五環素傳輸線模型能障
外文關鍵詞: Contact resistance, OTFTs, Pentacene, Fullerene
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中探討在以五環素(pentacene)為主動層的有機薄膜電晶體
    中,加入電極修飾層在主動層與源極/汲極的接觸效應,並且研究此電極
    修飾層對元件的影響。
    由於銦錫氧化物(ITO)電極和五環素的介面能障較高,因而影響載子
    注入,造成元件特性不佳。因此在汲極/源極與五環素之間加入一層富勒
    烯(fullerene)薄膜作為修飾層。和未經修飾的元件作比較,我們可以發
    現遷移率從0.057 cm2/vs 增加到0.23 cm2/vs,最大飽和電流從8.23μA
    增加到45.3μA,並且在可見光波段穿透率達到62%以上。
    這是由於修飾層(富勒烯)與主動層(五環素),會在介面形成摻雜,
    使得主動層內的少數載子,被電子受體分子給搶走,進而使得五環素分
    子中有更多的非定域化載子(delocalized)能夠釋放出來,因而增加載子
    傳輸層的導電度。
    另外,加入的有機分子於五環素表面形成保護層,避免了金屬電極
    於濺鍍時, 對五環素表面直接的破壞。最後利用傳輸線模型
    iv
    (Transmission Line Model)量測出在線性區電流電壓和通道長度的關
    係,萃取出接面電阻的部份。並且證明了加入富勒烯的元件特性比未加
    入富勒烯的元件特性為佳,是由於加入富勒烯後接觸電阻下降的緣故。

    This thesis discusses the interface effects of contact resistance between semiconductor
    layers and source/drain electrodes of pentacene-based organic thin-film transistors (OTFTs).
    While using indium tin oxide (ITO) as the source/drain electrode, the device performance
    became limited because of the interface barrier between the indium tin the oxide electrode
    and the pentacene layer, which caused limitations in the carrier injection.
    To improve the device performance, Fullerene (C60) was used as a modification layer
    inserted between the source/drain electrode and the pentacene. When comparing the devices
    both with and without modification layers, we observed that maximum saturation current
    increased from 8.23 μA to 45.3 μA, while the mobility increased from 0.057cm2/vs to
    0.23cm2/vs. Also the normalized contact resistance decreased from 1.697*106(Ωcm) to
    ii
    4.454*105(Ωcm) as VGS=-10V. Furthermore, the average transmittance in the visible range
    (400 to 700 nm) is as higher as 62%.
    These could be attributed to fullerene diffusion into the active layer pentacene formed
    doping on the surface which makes minority-carrier of pentacene pulled by strong electron
    acceptor molecule ,resulting in more delocalized carriers (hole) in pentacene film and
    increasing pentacene film conductivity.
    In addition, the thin fullerene layer prevented the bombardment of the pentacene
    molecule on the surface during source/drain electrode sputtering.
    Finally, we utilized the relationship of I-V and the L channel length of the linear region
    from the transmission line model to extract the contact resistance part to demonstrate that
    the improvement of device performance resulted from the reduction of contact resistance.

    English abstract ............................................................................................................................................... i Chinese abstract ............................................................................................................................................ iii Acknowledgements ........................................................................................................................................ v Contents.......................................................................................................................................................... vi List of Tables ................................................................................................................................................ viii List of Figures ................................................................................................................................................ ix 1. Introduction .................................................................................................................................................. 1 1.1. Background and Development................................................................................................................ 1 1.2. Comparison of inorganic semiconductors with organic semiconductors ................................................ 2 1.3. Motivation.............................................................................................................................................. 3 1.4. Organization........................................................................................................................................... 4 2. The Charge Transport Mechanisms of Organic Materials and the Operation Principle of OTFTs................ 5 2.1. Carrier transport mechanisms of organic material .................................................................................. 5 2.1-1. Hopping .......................................................................................................................................... 5 2.1-2. Multiple Trapping and Release Mode.............................................................................................. 6 2.2. Transistor structure ................................................................................................................................ 6 2.3. Operation principle ................................................................................................................................ 7 2.4. Important Parameters of OTFT............................................................................................................... 9 2.4-1. Field-Effect Mobility ....................................................................................................................... 9 2.4-2. Threshold Voltage......................................................................................................................... 10 2.4-3. Sub-threshold Slope ....................................................................................................................... 10 2.4-4. On/Off Current Ratio ..................................................................................................................... 10 2.4-5. Contact Resistance ..........................................................................................................................11 3. Experimental Procedure .............................................................................................................................. 13 vii 3.1. Materials and equipment...................................................................................................................... 13 3.1-1. Experimental equipment ................................................................................................................ 13 3.1-2. Experimental materials .................................................................................................................. 13 3.2. Organic thin film transistor (OTFT) devices fabrication ...................................................................... 15 3.2-1. Pre-processing Cleaning ................................................................................................................ 15 3.2-2. ITO transparent film as a gate electrode ........................................................................................ 16 3.2-3. PVP spin-coated as an insulator layer ............................................................................................ 16 3.2-4. Pentacene as the carrier transport layer.......................................................................................... 17 3.2-5. Thermal evaporated C60 as the buffer layer.................................................................................... 17 3.2-6. ITO transparent film as the source/drain electrode ........................................................................ 17 4. Results and Discussion............................................................................................................................... 19 4.1. Electrical measurement and I-V characteristics .................................................................................... 19 4.2. The Influence of the Contact Resistance of Pentacene-based OTFTs .................................................. 22 5. Conclusions and Future work...................................................................................................................... 24 5.1. Conclusions.......................................................................................................................................... 24 5.2. Future work.......................................................................................................................................... 25 References ...................................................................................................................................................... 26

    J. E. Lilienfeld, US Patent 1 745 175, 1930.
    [2] D. Kahng, M. M. Atalla, IRE Solid-State Devices Research Conference, Carnegie
    Institute of Technology, Pittsburgh, PA 1960.
    [3] D. F. Barbe, C. R. Westgate, “Surface state parameters of metal-free phthalocyanine
    single crystals,” J. Phys. Chem. Solids, 31, 2679, 1970.
    [4] M. L. Petrova, L. D. Rozenshtein, F. T. Tela , (Sov. Phys.- Solid State), 12, 961, 1970.
    [5] F. Ebisawa, T. Kurokawa, S. Nara, ”Electrical properties of
    polyacetylene/polysiloxane interface,” J. Appl. Phys. , 54, 3255 1983.
    [6] G. Horowitz, X. Z. Peng, D. Fichou, and F. Garnier, “Organic thin-film transistors
    using π-conjugated oligomers: Influence of the chain length,” Journal of Molecular
    Electronics, vol. 7, p. 85, 1991.
    [7] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene
    organic thin-film transistors-molecular ordering and mobility,” IEEE Electronics
    Device Letters, vol. 18, p. 87 1997.
    [8] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson ”Pentacene-based organic
    thin-film transistors,” IEEE Electronics Device Letters, vol. 44, p. 1325, 1997.
    [9] S.S.M. “Physics of Semiconductor Device”. 2nd ed. New York: Wiley, 1981.
    [10] C. D. Dimitrakopoulos, D. J. Mascaro “Organic thin film transistors: A review of
    recent advances,” IBM VOL. 45 NO. 1 JANUARY 2001.
    [11] J. M. Choi, D. K. Hwang, J. H. Kim, and S. Im ” Transparent thin-film transistors
    with pentacene channel, AlOx gate, and NiOx electrodes,” Appl. Phys. Lett., 86,
    123505, 2005.
    27
    [12] J. Lee, D. K. Hwang, J.-M. Choi, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim
    “Flexible semitransparent pentacene thin-film transistors with polymer dielectric
    layers and NiOx electrodes,” Appl. Phys. Lett., 87, 023504, 2005.
    [13] T. Takenobu, T. Takahashi, T. Tsukagoshi, Y. Aoyagi, and Y. Iwasa
    “High-performance transparent flexible transistors using carbon nanotube films,”
    Appl. Phys. Lett., 88,033511, 2006.
    [14] H. Ohta, T. Kambayashi, K. Nomura, M. Hirano, K. Ishikawa, H. Takezoe, and H.
    Hosono “Transparent organic thin-film transistor with a laterally grown non-planar
    phthalocyanine channel,” Adv. Mater. 16, 312, 2004.
    [15] Q. Cao, Z. T. Zhu, M. G. Lemaitre, M. G. Xia, M. Shim, and J. A. Rogers
    “Transparent flexible organic thin-film transistors that use printed single-walled
    carbon nanotube electrodes,” Appl. Phys. Lett., 88, 113511, 2006.
    [16] R. Hajlaoui, G Horowitz, F Garnier, A. A-Brouchet “Improved Field-Effect Mobility
    in Short Oligothiophenes: Quaterthiophene and Quinquethiophene,” Adv. Mater.
    Vol.9, No.5, 389 ,1997.
    [17] N. Koch, S. Duhm, and J. P. Rabe “Optimized Hole Injection with Strong Electron
    Acceptors at Organic-Metal Interfaces,” Phy. Rev. Lett. 95, 237601 (2005).
    [18] G. Horowitz “Organic Field-Effect Transistors” Adv. Mater. Vol.10, NO5,1998.
    [19] G. Horowitz, P. Delannoy “An analytical model for organic-based thin-film
    Transistors” J. Appl. Phys. vol. 70, p. 469, 1991.
    [20] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui “Temperature and gate voltage
    dependence of hole mobility in polycrystalline oligothiophene thin film transistors,”
    J. Appl. Phys. vol. 87, no. 9, p. 4456, 2000.
    [21] Y. G. Chen “Lithium Fluoride in Organic Thin Film Transistors applications”
    28
    Institute of Electro-Optical Science and Engineering National Cheng Kung
    University.
    [22] D. J. Gundlach, L. zhou, J. A. Nichols, and T. N. Jackson ” An experimental study of
    Contact effects in organic thin film transistors,” J. Appl. Phys. 100, 024509,2006.
    [23] T. Maeda, H. Kato, and H. Kawakami ” Organic field-effect transistors with reduced
    contact resistance,” Appl. Phys. Lett. 89, 123508, 2006.
    [24] S. H. Jin, K. D. Jung, H. Shin, B.G. Park, J. D. Lee “Grain size effects on contact
    resistance of top-contact pentacene TFTs,” Synthetic Metals 156 196–200,2006.
    [25] T. Minari, T. Miyadera, K. Tsukagoshi, and Y.Aoyagi “Charge injection process in
    organic field-effect transistors,” Appl. Phys. Lett. 91, 053508,2007.
    [26] S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi ”Contact-metal
    dependent current injection in pentacene thin-film transistors,” Appl. Phys. Lett. 91,
    203508,2007.
    [27] S. Gowrisanker, Y. Ai ,M. A. Quevedo-Lopez ,H. Jia “Impact of
    semiconductor/contact metal thickness ratio on organic thin-film transistor
    performance,” Appl. Phys .Lett. 92, 153305,2008.
    [28] K. Shibata, K. Ishikawa, and H. Takezoe “Contact resistance of
    dibenzotetrathiafulvalene-based organic transistors,” Appl. Phys. Lett. 92, 023305,
    2008.
    [29] D. Kumaki, T. Umeda and S. Tokito “Reducing the contact resistance of
    bottom-contact pentacene thin-film transistors by employing a MoOx carrier
    injection layer,” Appl. Phys. Lett. 92, 013301, 2008.
    [30] http://www.sigmaldrich.com/catalog/search/ProductDetail/ALDRICH/SearchResul
    page, Physical propertiesof poly(4-vinylphenol)(PVP).
    [31] http://www.sigmaaldrich.com/catalog/search/ProductDetail/418552,Physical
    29
    properties of poly (melamine-co-formaldehyde), methylated (PMF).
    [32] http://www.sigmaaldrich.com/catalog/search/ProductDetail/484431,Physical
    properties of propylene glycol monomethyl ether acetate (PGMEA).
    [33] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik “High-mobility
    organic thin-film transistors based onα,α′-didecyloligothiophenes, “ J. Appl. Phys.,
    Vol. 93, pp. 2977-2981(2003).
    [34] http://www.sesres.com/PhysicaIProperties.asp.
    [35] K. Suemor, M. Yoshida, S. Hoshino, T. Kodzasa, and T. Kamata “Effect of Built-in
    Potential under Drain Electrodes on Threshold Voltage of Organic Field-Effect
    Transistors,” Jpn. J. Appl. Phys., Vol. 46, No. 36,2007.
    [36] Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada, and Y. Tokura” Control of threshold
    voltage in pentacene thin-film transistors using carrier doping at the charge-transfer
    interface with organic acceptors,” Appl. Phys. Lett. 87,153506,2005.

    下載圖示 校內:2010-08-18公開
    校外:2010-08-18公開
    QR CODE