| 研究生: |
楊棣焱 Yang, Ti-Yen |
|---|---|
| 論文名稱: |
螞蟻啟發式學習法於多目標維修排程之研究 Enhanced Ant Colony Optimization in Multiple-Objective Scheduling Problem |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 螞蟻族群最佳化演算法 、多目標維修排程 、改良式螞蟻演算法 |
| 外文關鍵詞: | Multiple-objective maintenance scheduling, Ant Colony Algorithm, enhanced Ant Colony Optimization |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從全球化經濟時代的來臨,政府產業民營化、國際化政策的發動下,油品市場的競爭日益激烈,各個煉油業者莫不在尋找降低生產成本並提高產能的最佳方案,因此,儲油槽利用率的優化已成為流程管理上的重要議題。煉油業者在安排儲油槽維修時程時,所欲追求的目標不只是滿足消費者對石油量的需求,還要降低維修時所必須付出的成本,因此,在本研究中將多目標的概念同時納入問題中,期望可以同時滿足維修排程問題中多個目標的需求。然而,由於問題過高的複雜度,傳統上由專家依其經驗對維修任務進行排程可能已不適用,所以希望能藉由資訊科技的技術完成維修任務的排程問題。
維修排程問題的本質為NP-Hard問題,近來螞蟻族群最佳化演算法(Ant Colony Optimization, ACO)已經被成功地應用來解決各式NP-Hard問題,且其績效不比傳統的啟發式演算法差,但還具有某些可以改善的地方。因此,本研究將先探討螞蟻演算法的限制與缺陷,針對螞蟻演算法本身的缺失進行架構上的改良,並與原本的螞蟻族群最佳化演算法做績效上的比較,以證實改良式螞蟻演算法確實有較佳的表現。最後,將之應用於求解多目標儲油槽維修排程問題而獲得一非劣解集合,此一解集合則可幫助決策制訂者能於短時間內從龐大的可行解集合中制訂出最理想的排程規劃。
With the coming of globalization and privatization, the oil market in Taiwan becomes more and more competitive today than before. The best solution to maximize productivity and to minimize operating costs is explored by each petroleum corporation for keeping competitiveness. Therefore, the utilization ratio of oil tanks has already been an important issue and a suitable maintenance schedule of oil tanks has become the source of enterprise's profit and competitiveness. However, the objective of maintenance scheduling is not only to maximize the oil supply level, but also to minimize the maintenance costs. The complex conditions make domain experts difficult to arrange maintenance tasks properly. So the information techniques are proposed to support maintenance scheduling problem in this research.
Maintenance problem is essentially a NP-Hard problem. Ant Colony Optimization (ACO) algorithm has already succeeded in applying to solve various kinds of NP-Hard problems and is proved better performance than other classical heuristic algorithms. However, there are some drawbacks with ACO algorithm. In this thesis, we try to enhance the ACO algorithm after literature reviewing and then apply it to solve the multiple-objective maintenance scheduling problem of oil tanks to find out a Pareto solution set. This non-dominanced solution set will make decision makers easy to arrange the maintenance scheduling in the large number of solutions.
參考文獻
Arroyo, José Elias Claudio, & Vinícius Amaral Armentano (2005). Genetic local search for multi-objective flowshop scheduling problems. European Journal of Operational Research, 167(3), 717-738.
Beckers, R., Deneubourg, J. L., & Goss, S. (1992). Trails and U-turns in the selection of the shortest path by the ant Lasius Niger. Journal of Theoretical Biology, 159, 397-415.
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.
Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A new rank-based version of the ant system: A computational study. Central European Journal for Operations Research and Economics, 7(1), 25-38.
Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research, 89, 319-328.
Burke, E. K., & Smith, A. J. (2000). Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE Transactions on Power Systems, 15, 122-128.
Chen, H., Flann, N. S., & Watson, D. W. (1998). Parallel genetic simulated annealing: A massively parallel SIMD algorithm. IEEE Transactions on Parallel and Distributed Systems, 9(2), 126-136.
Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Ant System: An autocatalytic optimizing process. Technical Report, 91-016, Politecnico di Milano, Italy.
Colorni, A., Dorigo, M., & Maniezzo, V. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems. Man and Cybernetics, Part B, 26(1), 29-41.
Colorni, A., Dorigo, M., & Maniezzo, V. (1992). An investigation of some properties of an “Ant algorithm”. PPSN 92, Brussels, Belgium, Elsevier Publishing, 509-520.
Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant System for job-shop scheduling. JORBEL – Belgian Journal of Operations Research, Statistics and Computer Science, 34(1), 39-53.
Costa, D., & Hertz, A. (1997). Ants can colour graphs. Journal of the Operational Research Society, 48, 295-305.
Di Caro, G., & Dorigo, M. (1997). AntNet: A mobile agents approach to adaptive routing. Technical Report 97-12, IRIDIA, Universit´e Libre de Bruxelles.
Dopazo, J. F., & Merrill, H. M. (1975). Optimal generator maintenance scheduling using integer programming. IEEE Transactions on Power Apparatus and Systems, 94(5), 1537-1545.
Dorigo, M. (1992). Optimization, learning and natural algorithms, Ph.D. Thesis, Dip. Elettronicae Informazione, Politecnico di Milano, Italy.
Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In Corne, D., Dorigo, M., & Glover, F. (Eds.), New Ideas in Optimization (pp. 11-32). London, UK: McGraw-Hill.
Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the traveling salesman problem. BioSystems, 43, 73-81.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53-66.
Dorigo, M., Gambardella, L. M., & Di Caro, G. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137-172.
Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search strategy. Technical Report, 91-016, Politecnico di Milano, Italy.
Dorigo, M., & Stützle, T. (2002). The ant colony optimization metaheuristic: Algorithms, applications and advances. In Glover, F., & Kochenberger, G. (Eds.), Handbook of Metaheuristics. Kluwer Academic Publishers.
Feng, C. W., Liu, L., & Bruns, S. A. (1997). Using genetic algorithms to solve
construction time-cost trade-off problems. Journal of Construction Engineering and Management, ASCE, 11(3), 184-189.
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery in databases: An overview. In Piatetsky-Shapiro, G., & Frawley, W. J. (Eds.), Knowledge discovery in databases (pp.1-27). AAAI/MIT Press.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), 37-54.
Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the traveling salesman problem. In Prieditis, A., & Russell, S. (Eds.). In Proceedings of the Twelfth International Conference on Machine Learning (ML-95), 252-260.
Gambardella, L. M., & Dorigo, M. (2000). Ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3), 237-255.
Gambardella, L. M., Taillard, È. D., & Agazzi, G. (1999). MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In Corne, D., Dorigo, M., & Glover, F. (Eds.), New Ideas in Optimization (pp. 63-76). London, UK: McGraw-Hill.
Gravel, M., Price, W. L., & Gagne, C. (2002). Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. European Journal of Operational Research, 143, 218-229.
Glover, F. (1986). Future path for integer programming and links to artificial
Intelligence. Comput. Oper Res, 13, 533-549.
Gruhl, J. (1973). Electric generation production scheduling using a quasioptimal sequential technique. MIT Energy Lab, Research Note MITEL 73-003.
Gambardella, L. M., Taillard, È. D., & Dorigo, M. (1999). Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50(2), 167-176.
Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76, 579-581.
Han, J., Kamber, M. (2000). Data mining: Concepts and techniques. S. Francisco: Morgon Kaufmann Publishers.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.
Hölldobler, B., & Wilson, E. O. (1990). The ants. Berlin: Springer-Verlag.
Huang, S.-J. (2001). Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches. IEEE Transactions on Energy Conversion, 16(3), 296-301.
Kaji, T. (2001). Approach by ant tabu agents for traveling salesman problem. IEEE International Conference on System, Man, and Cybermetics, 5, 3429-3434.
Kim, H., Hayashi, Y., & Nara, K. (1997). An algorithm for thermal unit maintenance scheduling through combined use of GA, SA and TS. IEEE Transactions on Power Systems, 12(1), 329-335.
Kirpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.
Koopmans, T. C. (1951). Analysis of production as an efficient combination of activities. In Koopmans, T. C. (Ed.), Activity Analysis of Production and Allocation (pp. 33-97). New York: Cowles Commission Monograph 13, Wiley.
Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2006). Multi-Objective Tabu Search Using a Multinomial Probability Mass Function. Eur. J. Oper. Res. 169(3), 918-931.
Leguizamón, G., & Michalewicz, Z. (1999). A new version of ant system for subset problems. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), 1459-1464. Piscataway, NJ: IEEE Press.
Liang, Y.-C., & Smith, A. E. (1999). An ant system approach to redundancy allocation. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), 1478-1484. Piscataway, NJ: IEEE Press.
Liu, B., Abbass, H. A., & McKay, B. (2003). Classification rule discovery with ant colony optimization. IEEE/WIC International Conference on Intelligent Agent Technology 2003, 13(16), 83-88.
Loukil, T., Teghem, J., & Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European Journal of Operational Research, 161(1), 42-61.
Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4), 358-369.
Maniezzo, V., & Carbonaro, A. (2000). An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8), 927-935.
Maniezzo, V., & Colorni, A. (1999). The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, 11(5), 769-778.
Michel, R., & Middendorf, M. (1999). An ACO algorithm for the shortest supersequence problem. In Corne, D., Dorigo, M., & Glover, F. (Eds.), New Ideas in Optimization (pp. 51-61). London, UK: McGraw-Hill.
Navarro Varela, G., & Sinclair, M. C. (1999). Ant colony optimization for virtual-wavelength-path routing and wavelength allocation. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), 1809-1816. Piscataway, NJ: IEEE Press.
Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4), 321-332.
Satoh, T., & Nara, K. (1991). Maintenance scheduling by using the simulated annealing method. IEEE Transactions on Power Systems, 6(5), 850-857.
Sim, K. M., & Sun, W. H. (2003). Ant colony optimization for routing and load-balancing: survey and new directions. IEEE Transactions on Man and Cybernetics Systems, Part A, 33(5), 560-572.
Solnon, C. (2000). Solving permutation constraint satisfaction problems with artificial ants. In Horn, W. (Ed.), In Proceedings of the 14th European Conference on Artificial Intelligence (pp. 118-122). Amsterdam, The Netherlands: IOS Press.
Stützle, T., & Hoos, H. H. (2000). Max-Min ant system. Future Generation Computer Systems, 16(8), 889-914
Ting, C.-K, Li, S.-T, & Lee, C.-N. (2003). On the harmonious mating strategy through tabu search. Information Science Journal, 156(3-4), 189-214.
Wang, C. F., Zhao, X., & Kang, L. (2002). Business failure prediction using modified ants algorithm. In Proceedings of the 6th Joint Conference on Information Sciences, 1127-1130.
Yamayee, Z. A., Sidenblad, K., & Yoshimura, M. (1983). A computationally efficient optimal maintenance scheduling method. IEEE Transactions on Power Apparatus and Systems, 102(2), 330-338.
Ying, K.-C., & Liao, C.-. (2004). An ant colony system for permutation flow-shop sequencing. Computers and Operations Research, 31(5), 791-801.
Zurn, H. H., & Quintana, V. H. (1975). Generator maintenance scheduling via successive approximations dynamic programming. IEEE Transactions on Power Apparatus and Systems, 94(2), 665-671.
林敬貿(民94)。螞蟻演算法於儲油槽維修排程之研究。國立成功大學資訊管理研究所碩士論文,未出版,台南市。
許志義(民83)。多目標決策。台北市:五南。
劉盈利(民93)。螞蟻演算法與禁忌搜尋法混合模式於配水管網設計最佳化之應用。國立中興大學環境工程研究所碩士論文,未出版,台中市。