簡易檢索 / 詳目顯示

研究生: 張人懿
Chang, Jen-Yi
論文名稱: 演進型緩坡方程式應用於波浪大角度入射透水介質之研究
A evolution equation of mild-slope equation for water waves propagation over porous media with large angle incidence
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 透水介質緩波方程式
外文關鍵詞: porous media, mild-slope equation
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文擴展 Mordane 等人 (2004) 所發展的理論利用Padé [2,2] 近似展開演進型緩坡方程式之輻射邊界條件,並以 Rojanakamthorn (1989) 波浪通過透水介質理論為基礎重新探討波浪大角度通過透水結構物之波浪變形,包括波浪通過透水介質的淺化、折射、繞射、碎波與能量消散等效應。文中首先以實驗數據驗證本文模式之適用性,再以各種不同入射角度探討波浪大角度入射之問題。本文模式與波浪通過透水介質之試驗數據比較,發現文中結果與實驗數據有良好的一致性。同時,本文針對不同角度的入射,探討邊界消波情況,進而比較模式之通用性。最後,本文將模式應用於花蓮南北濱海岸之實例計算,獲得合理之波場分佈。

      In this paper, following the proceduce of the parabolic formulation using Padé [2,2] approximation of the propagation equation for water waves outlined by Mordane et al. (2004), the evolution equation of mild-slope equation is extended to describe combined wave refraction and diffraction propagating over porous media with large angle incidences. The model, which includes wave-porous media interaction, wavebreaking and dissipation, was developed to account for wave propagation on porous media based on Rojanakamthorn’s (1989) equation. The model is first verified by experiments for waves passing over porous media. Reasonably good agreements are obtained in terms of free surface displacement. Computational examples are provided to show the improvement in the higher-order Padé [2,2] approximation relative to the existing lower-order approximation.

    中文摘要 I 英文摘要 III 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 符號說明 XII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 4 1-3 本文組織 9 第二章 理論基礎 10 2-1 延伸型緩坡方程式 (extended mild-slope equation) 10 2-2 含透水介質之緩坡方程式 14 2-3 邊界條件 17 2-3-1輻射邊界條件 17 2-3-2 改良型輻射邊界條件 21 2-4 利用輻射邊界條件處理大角度問題 23 2-4-1 輻射邊界條件之近似解 23 2-4-2 輻射邊界條件之高階近似解 27 第三章 數值模式 33 3-1 控制方程式之離散化 33 3-2 邊界條件之離散化 34 第四章 模式測試與驗證 38 4-1 波浪通過透水結構物之模擬 39 4-2 波浪入射等坡度上之橢圓形淺灘 44 4-3 波浪入射等坡度上含透水效應之橢圓形淺灘 64 4-4 東部海域波場實例計算比較 77 第五章 結論與建議 83 5-1 結論 83 5-2 建議 84 參考文獻 85

    1.Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of 13th International Conference on Coastal Engineering, pp. 471- 490 (1972).
    2.Berkhoff, J.C.W., N. Booij and A.C. Radder, “Verification of Numerical Wave Propagation Models for Simple Harmonic Linear Water Waves,” Coastal Engineering, Vol. 6, pp. 255-279 (1982).
    3.Biesel, F., “Study of Wave Propagation in Water of Gradually Varying Depth,” U.S. National Bureau of Standards, Gravity Waves, NBS Circular 521, pp. 243-253 (1952).
    4.Booij, N., “Gravity Waves on Water with Non-uniform Depth and Current,” Delft University of Technology, Department of Civil Engineering, Report No. 81-1, (1981).
    5.Chamberlain, P. G. and D. Porter (1995), The modified mild-slope equation, Journal of Fluid Mechanics, Vol. 291, 393-407.
    6.Copeland, G.J.M., “A Practical Alternative to the Mild-Slope Wave Equation,” Coastal Engineering, Vol. 9, pp. 125-149 (1985).
    7.Dally, W.R., R.G. Dean and R.A. Dalrymple, “Wave Height Variation Across Beaches of Arbitrary Profile,” Journal of Geophysical Research, Vol. 90 (C6), pp. 11917-11927 (1985).
    8.Dalrymple, R.A., Suh, K.D., Kirby, J.T., Chag, J.W., “Models for Very Wide-Angle Water Waves and Wave Diffraction. Part 2. Irregular Bathymetry,” Journal of Fluid Mechanics, Vol. 201, pp. 299-322 (1989).
    9.Deen, R.G. and R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 262-271 (1984).
    10.Ebersole, B.A., Cialone, M.A. and Prater, M.D., “Regional Coastal Processes Numerical Modeling System,” Department of the Army, Waterway Experiment Station, Corps of Engineers (1986).
    11.Eckart, C., “The Propagation of Gravity Waves from Deep to Shallow Water,” U.S. National Bureau of Standards, Gravity Waves, NBS Circular, 521, pp. 165-173 (1952).
    12.Goda, Y., “Irregular Wave Deformation in the Surf Zone,” Coastal Engineering In Japan, Vol. 18, pp. 13-26 (1975).
    13.Hsu, T.W. and C.C. Wen, “A Study of Using Parabolic Model to Describe Wave Breaking and Wide-angle wave incidence,” Journal of the Chinese Institute of Engineers, Vol. 23, No. 4, pp. 515-527 (2000).
    14.Hsu, T. W., Wen, C. C., “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001).
    15.Hsu, T.-W., Y.-J. Lan, T.-K. Tsay and K.-P. Lin “Second-order radiation boundary condition for water wave simulation with large angle incidence.” Journal of Engineering Mechanics- ASCE, Vol. 129, No. 12, pp. 1429-1438 (2003).
    16.Isobe, M., “A Parabolic Equation Model for Transformation of Irregular Waves Due to Refraction, Diffraction and Breaking,” Coastal Eng. in Japan, Vol. 30, pp. 33-47 (1987).
    17.Ito, Y. and Tanimoto, K., “A Method of Numerical Analysis of Wave Propagation-Application to Wave Diffraction and Refraction,” Proceedings of Thirteenth International Coastal Engineering Conference, ASCE, pp. 503-522 (1972).
    18.Keller, J.B., “Surface Waves on Water of Nonuniform Depth,” Journal of Fluid Mechanics, Vol. 4, pp. 607-614 (1958).
    19.Kirby, J.T., “A Note on Linear Surface Wave-Current Interaction Over Slowly Varying Topography,” J. Geophysical Research, Vol. 89, No. C1, pp. 745-747 (1984).
    20.Kirby, J.T., “Higher-Order Approximations in the Parabolic Equation Method for Water Waves,” Journal of Geophysical Research, Vol. 91, pp. 933-952 (1986a).
    21.Kirby, J.T., “Rational Approximations in the Parabolic Equation Method for Water Waves,” Coastal Engineering, Vol. 10, pp. 355-378 (1986b).
    22.Li, B., “An Evolution Equation for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
    23.Liu, P.L.F., “Damping of Water Waves Over porous Bed,” Journal of Hydraulic Division, Vol. 99, pp. 2263-2271 (1973).
    24.Losada, I.J., R. Silva, M.A. Losada “Interaction of Non-breaking Directional Random Waves with Submerged Breakwaters,” Coastal Engineering, Vol. 28, pp.249-266 (1996).
    25.Lozano, C. and Liu, P.L.F., “Refraction-Diffraction Model for Linear Surface Water Waves,” Journal of Fluid Mechanics, Vol. 101, No. 4, pp. 705-720 (1980).
    26.Isaacson, M. and Qu, S., “Waves in a harbour with partially reflecting boundaries,” Coastal Engineering, Vol. 14, No. 3, pp. 193-214 (1990).
    27.Madsen, P.A. and Larsen, J., “An Efficient Finite-Diffraction Approach to the Mild-slope Equation,” Coastal Engineering, Vol. 11, pp. 329-351 (1987).
    28.Maa, P.-Y., T.-W. Hsu and D.-Y. Lee (2002). The RIDE model: an enhance computer program for wave transformation. Ocean Engineering, Vol. 29, No. 11, pp.1441-1458. (EI&SCI, IF=0.206).
    29.Mei, C. C., “The Applied Dynamics of Ocean Surface Waves,” Wiley-Interscience, New York (1983).
    30.Mordane, S., G. Mangoub, K. L. Maroihi and M. Chagdali (2004) “A parabolic equation based on a rational quadratic approximation for surface gravity wave propagation,” Coastal Engineering, pp 85-95.
    31.Ou, S.H., S.Y. Tzang and T.W. Hsu, “Wave Field Behind the Permeable Detached Breakwater,” Proceeding of 21st Conference on Coastal Engineering, Malaga, ASCE, pp. 659-714 (1988).
    32.Peters, A.S., “Water Waves over Sloping beach and solution of a Mixing Boundary Value Problem for in a Sector,” Commun. Pure Appl. Maths, Vol. 9, pp. 443-493 (1952).
    33.Panchang, V.G., B.R. Pearce, Ge Wei and B. Cushman-Roisin, “Solution of the Mild-Slope Wave Problem by Iteration,” Applied Ocean Research., 13(4). pp. 187-199 (1991).
    34.Panchang, V., W. Chen, B. Xu, K. Schlenker, Z. Demirbilek, and M.Okihiro, “Exterior Bathymetric Effects in Elliptic Harbor Wave Models”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, pp. 71-78 (2000).
    35.Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, pp. 159-176 (1979).
    36.Radder, A.C. and Dingemans, M. W., “Canonical Equation for Almost Periodic, Weakly Nonlinear Gravity Waves,” Wave Motion, Vol. 7, pp. 473-485 (1985).
    37.Rojanakamthorn, S., M. Isobe and A. Watanabe, “A Mathmatical Model of Wave Transformation over a Submerged Breakwater,” Coastal Engineering in Japan, Vol. 32, No. 2, pp. 209-234 (1989).
    38.Shepard, F.P. and D.L. Inman, “Nearshore Circulation Related to Bottom Topography and Wave Refraction,” Trans. Am. Geophys. Union, Vol. 3, No. 2, pp. 196-212 (1950).
    39.Shuto, N., “Nonlinear Long Waves in a Channel of Variable Section,” Coastal Engineering in Japan, Vol. 17, pp. 1-12 (1974).
    40.Sollitt, C.K. and Cross, R.H., “Wave Transmission Through Permeable Breakwaters,” Proceedings of 13th International Conference on Coastal Engineering, pp. 1827-1846 (1972)
    41.Sommerfeld, A., “Mechanics of Deformable Bodies,” Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York (1964)
    42.St. Mary, D.F. (1985) “Analysis of an implicit finite difference scheme for very wide angle underwater acoustic propagation,” Proceedings of the 11th IMACS World Congree on system simulation and scientific computation, Oslo (Norway), vol. 2, pp. 153-156.
    43.Tsai, C. P., Chen, H. B., Hsu, J. R.-C., “Calculations of Wave Transformation Across the Surf Zone,” Ocean Engineering, Vol. 28, pp. 941-955 (2001).
    44.Tsai, C.P., H.B. Chen, and H.T. Hsu “Estimation of Wave Height Deformation in Surf Zero,” Journal of Harbor Technology, Vol. 10, No 1, pp.93-111 (1995).
    45.Weiss, J.M., “Three-Dimensional Linear Solution for Wave Propagation with Sloping Bottom,” IEEE J. Oceanic Eng., Vol. 22, No. 2, pp. 203-210 (1997)
    46.郭一羽主編,「海岸工程學」,文山書局,第149頁-第153頁 (2001)。
    47.藍元志,許泰文,蔡金晏,「改良型輻射邊界條件於近岸波場模式之應用,中國土木水利工程學刊」,第十六卷,第二期,pp. 1-10 (2004)。

    下載圖示 校內:2006-06-21公開
    校外:2006-06-21公開
    QR CODE