簡易檢索 / 詳目顯示

研究生: 黃炫榕
Huang, Shuang-Rung
論文名稱: 以甲基藍為感光劑對腸病毒71型之光動力去活化作用
Photodynamic Inactivation of Enterovirus 71 with Methylene Blue
指導教授: 余俊強
Yu, Chun-Keung
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 43
中文關鍵詞: 光動力療法腸病毒71型甲基藍
外文關鍵詞: Photodynamic treatment, Methylene blue, Enterovirus 71
相關次數: 點閱:60下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光動力療法(Photodynamic treatment),簡稱PDT,是感光劑在光線及氧氣充足的環境下產生可毒殺癌細胞及微生物的一種反應,許多感光劑的作用機制是透過與核酸之高親合力,在受到光線激發下產生自由基,破壞微生物結構並會造成蛋白質及核酸之交叉結合。在本研究中,我們探討最廣泛使用之感光劑甲基藍,是否對腸病毒71型有光動力去活化作用。腸病毒71型屬於小RNA病毒,可造成幼兒嚴重中樞神經感染,目前無有效的抗病毒藥物及疫苗可供使用,一般認為病毒透過糞口途徑傳播,對於酒精消毒則具有抗性。我們證明了甲基藍在可見光的激發下,有效地使固體表面上之腸病毒71型去活化而達到消毒效果。病毒懸浮狀態下,對於甲基藍光動力效應具有濃度及光強度依存性,而單獨給予甲基藍處理、單獨光線照射或是先將甲基藍光照後再處理病毒,均無光動力去活化作用產生。在懸浮狀態下,對於腸病毒71型最佳的光動力條件為光強度200 J/cm2及甲基藍濃度0.1 mM,此條件並可有效去活化其他腸病毒屬病毒,包括小兒麻痺病毒1型、克沙奇病毒A2、A3、A16及B3。在西方墨點及反轉錄聚合酶鏈反應分析中亦發現光動力效應會破壞病毒蛋白及RNA基因體,可能為PDT抑制腸病毒71型之分子機制。因此,光動力效應可作為清除環境中腸病毒71型的一種消毒方法,藉此減少腸病毒傳播降低感染率。

    Photodynamic treatment (PDT) has been applied to destroy cancer cells and a variety of microorganisms including bacteria and viruses by combining light and photosensitizing agents in an oxygen-rich environment. Certain photosensitizing agents can bind strongly with nucleic acids and generate reactive oxygen species after activation upon illumination, which is responsible for the disruption of viral structures and viral nucleic acid-protein cross-linkage. In this study, we have tested whether methylene blue (MB), the most widely used photosensitizing agent, is feasible for photodynamic inactivation of enterovirus 71 (EV71), a non-enveloped virus belonging to the Picornaviridae family, which can cause severe central nervous system infections and has neither anti-viral drug nor vaccine available. EV71 is transmitted through oral-fecal route and resistant to 70 % alcohol disinfection. We demonstrated that EV71 on solid surface could be photodynamically inactivated by illumination with visible light in the presence of MB. Photodynamic inactivation of EV71 in suspensions by MB showed dose- and light-intensity-dependent manners. Illumination without MB or MB alone in the dark and preactivation of MB showed no such effect. The optimal condition for photoinactivating EV71 required a light intensity of 200 J/cm2 and MB of 0.1 mM. This PDT condition could also inactivate other enteroviruses, including poliovirus 1, cosackievirus A2, A3, A16, and B3. Western blot and reverse-transcriptase PCR analysis indicated that the viral proteins and genome were broken after PDT. Thus, protein and genome damage appears to be involved in photoinactivation of EV71. In conclusion, PDT can inactivate EV71 efficiently and it may provide a method of eliminating environmental contaminated source of EV71 to prevent EV71 infections.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 一、光動力效應 1 二、光動力效應抑制腫瘤相關研究 2 三、光動力效應抑制微生物相關研究 2 四、光動力效應之血液製劑消毒作用 3 五、甲基藍化合物特性及其光化學反應 4 六、腸病毒71型流行病學及防治 5 第二章 研究目的及特異目標 7 第三章 材料及方法 9 一、材料 9 1、細胞株 9 2、病毒 9 3、實驗動物 9 4、試劑套組 9 5、耗材 9 6、儀器 10 二、方法 11 1、細胞及病毒培養 11 2、甲基藍配製 12 3、固體表面腸病毒71型於不同相對濕度環境之存活率 12 4、固體表面腸病毒71型之光動力效應進行 12 5、懸浮狀態腸病毒71型之光動力效應進行 13 6、光動力效應處理之腸病毒71型在實驗動物感染力 13 7、甲基藍與病毒培養時間及光通量對於光動力效應影響 14 8、光動力效應處理腸病毒屬中其他病毒 14 9、西方墨點法 (Western blot) 15 10、反轉錄聚合酶鏈反應 (Reverse-trascriptase PCR, RT-PCR) 16 11、統計分析 18 第四章 結果 19 一、光動力效應去活化固體表面上之腸病毒71型 19 二、光動力去活化腸病毒71型呈現光能量及甲基藍劑量依存性 19 三、光動力處理下存活之腸病毒71型仍保持其致病性 20 四、甲基藍與病毒培養時間及光通量非主要光動力效應參數 20 五、光動力效應可去活化其他腸病毒屬病毒 21 六、甲基藍透過破壞腸病毒71型蛋白及RNA基因體進行光動力去活化 21 第五章 討論 23 參考文獻 28

    1. Hopper, C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol 1, 212-9 (2000).
    2. Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat Rev Cancer 3, 380-7 (2003).
    3. Moan, J. & Peng, Q. An outline of the hundred-year history of PDT. Anticancer Res 23, 3591-600 (2003).
    4. Mew, D., Wat, C. K., Towers, G. H. & Levy, J. G. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol 130, 1473-7 (1983).
    5. Goff, B. A., Bamberg, M. & Hasan, T. Photoimmunotherapy of human ovarian carcinoma cells ex vivo. Cancer Res 51, 4762-7 (1991).
    6. Polo, L., Valduga, G., Jori, G. & Reddi, E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. Int J Biochem Cell Biol 34, 10-23 (2002).
    7. Allison, B. A., Pritchard, P. H. & Levy, J. G. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer 69, 833-9 (1994).
    8. Richter, A. M. et al. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 57, 1000-6 (1993).
    9. Fingar, V. H., Wieman, T. J. & Haydon, P. S. The effects of thrombocytopenia on vessel stasis and macromolecular leakage after photodynamic therapy using photofrin. Photochem Photobiol 66, 513-7 (1997).
    10. Fingar, V. H. et al. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer 79, 1702-8 (1999).
    11. Dolmans, D. E. et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res 62, 2151-6 (2002).
    12. Chen, Q., Chen, H. & Hetzel, F. W. Tumor oxygenation changes post-photodynamic therapy. Photochem Photobiol 63, 128-31 (1996).
    13. Shumaker, B. P. & Hetzel, F. W. Clinical laser photodynamic therapy in the treatment of bladder carcinoma. Photochem Photobiol 46, 899-901 (1987).
    14. Gollnick, S. O., Liu, X., Owczarczak, B., Musser, D. A. & Henderson, B. W. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res 57, 3904-9 (1997).
    15. de Vree, W. J. et al. Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res 56, 2908-11 (1996).
    16. Gollnick, S. O., Vaughan, L. & Henderson, B. W. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res 62, 1604-8 (2002).
    17. Wainwright, M. Photoinactivation of viruses. Photochem Photobiol Sci 3, 406-11 (2004).
    18. Hamblin, M. R. & Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3, 436-50 (2004).
    19. Cunha, B. A. Antibiotic resistance. Control strategies. Crit Care Clin 14, 309-27 (1998).
    20. Wendt, C., Dietze, B., Dietz, E. & Ruden, H. Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 35, 1394-7 (1997).
    21. Nitzan, Y. & Ashkenazi, H. Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 42, 408-14 (2001).
    22. Ben-Hur, E. & Horowitz, B. Advances in photochemical approaches for blood sterilization. Photochem Photobiol 62, 383-8 (1995).
    23. Klein, H. G. Pathogen inactivation technology: cleansing the blood supply. J Intern Med 257, 224-37 (2005).
    24. Williamson, L. M., Cardigan, R. & Prowse, C. V. Methylene blue-treated fresh-frozen plasma: what is its contribution to blood safety? Transfusion 43, 1322-9 (2003).
    25. Clifton, J., 2nd & Leikin, J. B. Methylene blue. Am J Ther 10, 289-91 (2003).
    26. Naylor, G. J., Martin, B., Hopwood, S. E. & Watson, Y. A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis. Biol Psychiatry 21, 915-20 (1986).
    27. Arnold, W. P., Mittal, C. K., Katsuki, S. & Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74, 3203-7 (1977).
    28. Moan, J. & Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53, 549-53 (1991).
    29. Foote, C. S. Photosensitized oxidation and singlet oxygen:consequences in biological systems. (1976).
    30. Kelly, J. M., van der Putten, W. J. & McConnell, D. J. Laser flash spectroscopy of methylene blue with nucleic acids. Photochem Photobiol 45, 167-75 (1987).
    31. Floyd, R. A., West, M. S., Eneff, K. L. & Schneider, J. E. Methylene blue plus light mediates 8-hydroxyguanine formation in DNA. Arch Biochem Biophys 273, 106-11 (1989).
    32. Schneider, J. E., Jr., Pye, Q. & Floyd, R. A. Q beta bacteriophage photoinactivated by methylene blue plus light involves inactivation of its genomic RNA. Photochem Photobiol 70, 902-9 (1999).
    33. Schmidt, N. J., Lennette, E. H. & Ho, H. H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129, 304-9 (1974).
    34. Hyypia, T., Hovi, T., Knowles, N. J. & Stanway, G. Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78 ( Pt 1), 1-11 (1997).
    35. Ho, M. Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect 33, 205-16 (2000).
    36. Shindarov, L. M. et al. Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. J Hyg Epidemiol Microbiol Immunol 23, 284-95 (1979).
    37. Nagy, G., Takatsy, S., Kukan, E., Mihaly, I. & Domok, I. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol 71, 217-27 (1982).
    38. Outbreak of hand, foot and mouth disease in Sarawak. Cluster of deaths among infants and young children. Wkly Epidemiol Rec 72, 211-2 (1997).
    39. Ho, M. et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 341, 929-35 (1999).
    40. Moce-Llivina, L., Lucena, F. & Jofre, J. Enteroviruses and bacteriophages in bathing waters. Appl Environ Microbiol 71, 6838-44 (2005).
    41. Wang, Y. F. et al. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 78, 7916-24 (2004).
    42. Lin, Y. C. & Wu, S. C. Effects of ozone exposure on inactivation of intra- and extracellular enterovirus 71. Antiviral Res 70, 147-53 (2006).
    43. Bachmann, B., Knuver-Hopf, J., Lambrecht, B. & Mohr, H. Target structures for HIV-1 inactivation by methylene blue and light. J Med Virol 47, 172-8 (1995).
    44. Huang, Q. et al. Inactivation of dengue virus by methylene blue/narrow bandwidth light system. J Photochem Photobiol B 77, 39-43 (2004).
    45. Mohr, H., Lambrecht, B. & Schmitt, H. Photo-inactivation of viruses in therapeutical plasma. Dev Biol Stand 81, 177-83 (1993).
    46. Pervaiz, S. Reactive oxygen-dependent production of novel photochemotherapeutic agents. Faseb J 15, 612-7 (2001).
    47. Papin, J. F., Floyd, R. A. & Dittmer, D. P. Methylene blue photoinactivation abolishes West Nile virus infectivity in vivo. Antiviral Res 68, 84-7 (2005).
    48. Lenard, J., Rabson, A. & Vanderoef, R. Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci U S A 90, 158-62 (1993).
    49. Takasugi, M. et al. Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A 88, 5602-6 (1991).
    50. Liu, Z. R., Wilkie, A. M., Clemens, M. J. & Smith, C. W. Detection of double-stranded RNA-protein interactions by methylene blue-mediated photo-crosslinking. Rna 2, 611-21 (1996).
    51. Fernandez Cobo, M., Pasian, E. L. & de Martinez Segovia, Z. M. Photodynamic inactivation of Junin virus. Med Microbiol Immunol 175, 67-9 (1986).
    52. Lim, D. S. et al. Photoinactivation of vesicular stomatitis virus by a photodynamic agent, chlorophyll derivatives from silkworm excreta. J Photochem Photobiol B 67, 149-56 (2002).
    53. Millson, C. E., Wilson, M., MacRobert, A. J. & Bown, S. G. Ex-vivo treatment of gastric Helicobacter infection by photodynamic therapy. J Photochem Photobiol B 32, 59-65 (1996).

    下載圖示 校內:2010-08-30公開
    校外:2010-08-30公開
    QR CODE