研究生: |
吳宗諭 Wu, Jon-Wi |
---|---|
論文名稱: |
影響熱流式井中地下水流儀量測準確度因子之研究 Study of the influence factors of measurement for the Heat-Flow Flowmeter |
指導教授: | 李振誥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 熱流式水流儀 、地下水流速流向 、海棉濾材 、鹽水比熱 |
外文關鍵詞: | heat-flow flowmeter, velocity and direction of groundwater, sponge filter, salt water specific heat |
相關次數: | 點閱:116 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用地下水水流儀來調查地下水流場,為近年來於國內的污染場址調查與地下水流場調查之常用儀器,其中熱流式水流儀為常用儀器之ㄧ,其具有簡單與方便之優勢。為探討熱流式水流儀於測量流速與流向之干擾與影響程度,本研究藉由實驗室設計之砂箱試驗,探討海棉濾材、密封環、監測井井篩開孔、地下水水質與比熱四項因子於實驗室砂箱使用熱流式水流儀,流速與流向所造成儀器測量干擾與影響程度,並應用於現場驗證其流速與流向。
由試驗成果顯示,相同規格不同產地之海棉濾材,對於水流儀流速流向之量測誤差範圍影響不大,其流速之差異約為10%以內,流向差異為10度以內,而儀器測得之流速與流向,差異範圍皆在儀器誤差範圍之內。於有安裝海棉濾材情況下,無密封環測得之流速為有密封環測得之流速值減少約20 ~ 30%,研究亦顯示,監測井之井篩開孔與水流相對位置亦會影響水流流入井管之流況,造成儀器測量之流速有所差異,監測井之井篩開孔與水流相對位置會干擾儀器測量之流向,其影響程度在30度以內。水質鹽水比熱將會影響水流儀流速測量結果,比熱越小則水流儀測得之流速值亦越小。
The groundwater flowmeters in recent years are often used to investigate groundwater flow in pollution site and groundwater flow investigation. The heat-flow flowmeter is one of groundwater flowmeters, which has the superiority of simple and convenience. The thesis is proposed to discuss instrument disturbance and influence of measurement by laboratory sand tank. We focus on four influence factors with sponge filters, packing ring, well screens, as well as groundwater quality and specific heat accompanying with laboratory sand tank. Finally, application on the field site is also presented in order to validate groundwater velocity and direction of measurement of heat-flow flowmeter.
The results show that the measurement variation of groundwater velocity and direction using different sponge filters is insignificant, and the difference of measurement velocity and direction is less 10% and 10 degrees, respectively. It indicated that the measurement difference of velocity and direction is within the instrument error scope. As considering the sponge filter installed, the values of velocity of measurement without packing ring has lower 20 ~ 30% than those with packing ring. It also indicated that the variation of measurement flow direction within the well was related to the relative position between well screens and groundwater direction, and the difference degree of flow direction is less 30 degrees. Furthermore, the variation of measurement velocity within the well was related to the relative position between well screens and groundwater flow. The relative position also affects the situation of water inflow well resulting in the difference of measurement velocity. Since the specific heat of salt water affects the velocity of measurement, the results showed that as the specific heat is smaller, the velocity of measurement is smaller.
Bear, J., and Verruijt, A. (1987). Modeling groundwater flow and pollution, Reidel, Dordrecht, The Netherlands.
Bidaux, P., Tsang , C.F., (1991) “Fluid flow patterns around a well bore or an underground drift with complex skin effects”, Water Resources Research, Vol.27, No.11, pp,2993-3008.
Carslaw, H.S., Jaeger, J.C., (1959) “Conduction of heat in solids”, Oxford University Press, New York, 510 pp.
Darcy, H. (1856). “Les fontaines publiques de la ville de Dijon.” Exposition et affiliation des principes à suivre et des formules à employer dans les questions de distribution d'eau, Dalmont, Paris (in French).
Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F. and Rauert, W. (1968) “Point Dilution Method of Investigating Groundwater Flow by Means of Radioisotopes”, Water Resour. Res., 4, pp.125-148.
Dardo O., (2007) “A Method to Improve Flow-Velocity Measurements From an Array of Partially Cosine Response Sensors”, IEEE Transactions On Instrumentation And Measurement, Vol. 56, NO.5.
Hess, A. E., (1986) “Identifying Hydraulically conductive fractures with a slow-velocity borehole flowmeter”, Can. Geotech. J., 23, 69-78.
Kearl, P.M., (1997) “Observations of particle movement in a monitoring well using the colloidal borescope”, Journal of Hydrology. 200, pp.323-344.
Kearl, P.M., Roemer, K., (1998) “Evalution of groundwater flow directions in a heterogeneous aquifer using the colloidal borescope”, Advances in Environmental Research, Vol.2, No.1, pp.12-23.
Kerfoot, W.B., (1988) “Monitoring construction and recommended procedures for direct groundwater flow measurements using a heat-pulsing flowmeter”, Ground-Water Contamination: Field Methods. American Society for Testing and Materials, Philadelphia PA. pp.146-16.
Kerfoot, W.B., Massard, V.A., (1985) “Monitoring well screen influences on direct flowmeter mwasurements”, Gound Water Monit. Rev. Fall, pp.74-77.
Lengricht J.W., Graw K.-U., (2002) “Borehole Flow Analysis by Particle Image Velocimetry”, Hydraulic Measurements and Experimental Methods, pp.997-1006.
Milne-Thompson, L. M., (1968) Theoretical Hydraudynamics. The McMilian Company, Inc., New York.
Momii, K., Jinno, K., Hirano, F. (1993), “Laboratory Studies on a New Laser Doppler Velocimeter System for Horizontal Groundwater Velocity Measurements in a Borehole”, Water Resour. Res., 29, pp.283-291.
Ogilvi, N.A., (1958) “An Electrolytical Method of Determining The Filtration Velocity of Underground waters”, Bull. Sci-Tech. Inf. No.4(16) Gosgeoltekhisdat, Moscow.
Shigeo K., (2005), “Development of Groundwater Flowmeter: A Way to Estimate an Amount of Heat Collected by Geothermal Heat Pumps”, Proceedings World Geothermal Congress, Antalya, Turkey, 24-29 April, pp.1-5.
Sabatini D.A., Austin T.A., (1991), “Characteristics of Rhodamine WT and Fluorescein as Adsorbing Ground-Water Tracers”, GROUND WATER Vol.29, No.3, pp. 341-349.
Wheatcraft, S.W., Winterberg F., (1985), “Steady state flow passing through a cylinder of permeability different from the surrounding medium”,Water Resources Research, Vol.21, No.12, pp.1923-1929.
Wilson, J.T., Mandell, W.A., Paillet F., Bayless, E.R., Hanson, R.T., Kearl, P.M., Kerfoot, W.B., Newhouse, M.W., Pedler, W.H., (1999), “An Evaluation of Borehole Flowmeters Used to Measure Horizontal Groundwater Flow in Limestones of Indiana, Kentucky, and Tennessee”, Water-Resource Investigations Report 01-4139, USGS.
Wu, Y.S., Yu, J.L., Tseng, C.C., Liu, T.K., Hwung, H. H., (2005), “Application of Groundwater Flow Measuring Techniques: The Use of Colloidal Borescope System (CBS), The 4th International Symposium on Environmental Hydraulics and the 14th Congress of Asia and Pacific Division”, International Association of Hydraulic Engineering and Research, Hong Kong, pp.2075-2081.
Asahi Geo Survey,http://www.asahigs.co.jp/monitoring_system/ gfd_q&a.html
The-Engineering-TooolBox,http://www.engineeringtoolbox.com/sodium-chloride-water-d_1187.html
方詠舜,(2006),『井中與地層中地下水流差異性之研究』,國立成功大學碩士論文。
安藤義久、田村考廣、長塚正樹、野澤篤志,(1990),『利用CCD照相機測地下水流速及流向之適用性』,日本水文、水資學會研究發表會要旨集,196-199頁。
余進利、林碧山、張璠、林觀富,(1994),『地下水流速流向量測方法之探討』,第七屆水利工程研討會論文及,E187-E196頁,基隆。
吳育生、方詠舜、李振誥,(2006),『井中與地層中地下水流差異性之探討』,台灣水利,第55卷第1期,32-40頁。
吳育生、余進利、曾建璋,(2004),『應用井中攝影技術量測地下水流速流向』,第六屆水資源及水質保護研討會論文集,199-206頁。
曹以松,(2003),『地下水』,中國土木水利工程學會,台北市。
台灣土壤及地下水環境保護協會,http://www.tasgep.org.tw/。
台南市環境保護局,http://www.tnepb.gov.tw/。