簡易檢索 / 詳目顯示

研究生: 蕭清懋
Hsiao, Ching-Mao
論文名稱: 以動物及細胞實驗模式評估微生物發酵產物以及紫檀芪之降尿酸功效並降低尿酸性腎病變機轉
Study on the urate-lowering effects and reducing urate nephropathy mechanisms of microbial fermented extracts and pterostilbene by using animal and cell culture experimental models
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 68
中文關鍵詞: 尿酸腎病變黃嘌呤氧化還原酶微生物發酵產物紫檀芪
外文關鍵詞: uric acid, nephropathy, EMT, microbial fermented extracts, pterostillbene
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尿酸是嘌呤代謝的最終產物,主要由肝臟及腸道製造,黃嘌呤氧化還原酶(XOR)以兩種形式存在,分別為黃嘌呤脫氫酶(XDH)和黃嘌呤氧化酶(XOD)。黃嘌呤氧化還原酶將次黃嘌呤代謝成黃嘌呤,再由黃嘌呤代謝為尿酸鹽/尿酸。高尿酸血症在男性中的定義為高於7 mg/dL (416 µM),而女性為高於6 mg/dL (360 µM)。高尿酸血症被視為是一種代謝缺失異常症群,常與痛風、腎疾病、心血管疾病、糖尿病、發炎及代謝症候群有關連。因此降低血清尿酸可以預防這些慢性疾病的發生或惡化。而臨床上降尿酸藥物如: 別嘌呤醇及丙磺舒卻會有副作用如:過敏、搔癢及皮疹的產生,使這些藥物的應用受到限制,所以開發預防及治療高尿酸血症的藥物是必要的。有些微生物發酵產物因為具有抑制黃嘌呤氧化酶及尿酸酶活性進而可達到降低尿酸的效果,而紫檀芪也證實具調控尿酸運輸蛋白能力而達到降低尿酸功效。因此,在本研究中使用高尿酸血症小鼠作為動物模式及正常大鼠腎臟表皮細胞株NRK-52E探討微生物發酵產物及紫檀芪是否會降低血清中的尿酸值及抑制腎臟病變可能機轉。在動物實驗中,以管餵potassium oxonate (PO)誘發小鼠高尿酸血症的動物模式,接著管餵微生物發酵產物及紫檀芪後分析血清中生化值及肝臟黃嘌呤氧化酶 (XOD) 活性,評估是否能治療或預防高尿酸血症,接著在飼料中另外添加腺嘌呤,作為尿酸性腎病變的動物模式,探討紫檀芪是否能降低血清中的尿酸濃度、生理變化、腎功能指標、腎臟組織病理變化及纖維化相關蛋白質的表現。在細胞實驗中,以TGF-β1誘發NRK-52E細胞纖維化並預先處理紫檀芪是否能減低上皮細胞間質轉換Epithelial Mesenchymal Transition (EMT) 指標的表現,利用Trypan blue分析紫檀芪及TGF-β1對於NRK-52E細胞生長的影響,以免疫螢光及西方墨點法觀察分析細胞的型態及EMT指標的改變,最後探討可能的路徑機轉。實驗結果顯示微生物發酵產物及紫檀芪在治療模式及預防模式中能降低血清中的尿酸值,且在預防模式中能抑制肝臟XOD的活性。接著在尿酸性病變模式中,紫檀芪能降低血清中尿酸值、改善血清及尿液中CRE及BUN,在腎臟免疫組織染色中與病變組相比,能增加E-cadherin及降低Vimentin表現,並且給予紫檀芪會減少巨噬細胞的聚集以及降低TGF-β1在腎臟中表現增加。而在西方墨點法分析腎臟組織蛋白的表現,也發現給予紫檀芪能增加E-cadherin且抑制Fibronectin、Vimentin及α-SMA的表現。從NRK-52E細胞存活率結果中選出紫檀芪合適的劑量 1 µM,在可見光顯微鏡觀察下, TGF-β1誘發細胞型態變寬大,而給予紫檀芪後能減少細胞型態變寬,並從免疫螢光染色中發現給予紫檀芪處理組與TGF-β1組相比,表皮指標ZO-1增加及EMT指標Vimentin下降。在西方墨點法中,給予紫檀芪也能改善由TGF-β1誘發EMT蛋白E-cadherin、Vimentin、Fibronectin、α-SMA改變。進一步的分析自體吞噬相關蛋白的表現,發現在給予紫檀芪處理後會增加LC3-II的表現,並且在免疫螢光染色中也發現預先處理紫檀芪在加入TGF-β1比起紫檀芪和TGF-β1單獨處理處增加autophagic flux表現量,而在西方墨點法中也發現合併處比單獨處理的LC3-II的表現增加。綜合以上實驗結果,證實微生物發酵產物及紫檀芪在治療及預防模式中能透過抑制XOD表現進而降低血清中尿酸值,並在尿酸性腎病變中,紫檀芪能改善腎臟的纖維化的產生,在細胞中能改善EMT相關指標的表現, 其保護的機轉可能是透過增強自體吞噬來減低細胞纖維化。

    The purpose of this study is to detect urate-lowering effects and reducing urate nephropathy mechanisms of microbial fermented extracts (MFEs) and pterostilbene (PT) by using animal and cell culture experimental models. In in vivo study, MFEs and PT hyperuricemic mice, reduced and prevented serum urate levels and liver XOD acitivity in hyperuricemic mice. In the acute toxicity study, the mice did not show any form of morbidity or mortality after gavaged MFEs. Further more, we used urate nephropathy model to confirm whether PT could prevent renal fibrosis. Our results showed that PT reduced serum urate levels and enhanced creatinine and BUN excretion in oxonate-induced hyperuricemic mice. In the kidney, HE-stained, Masson's trichrome-stained and immunohistochemistry showed PT could prevent fibrosis and EMT marker expression. Western blot analysis also demonstrated PT treatment prevent alteration in the expression of E-cadherin, Fibronectin, α-SMA and vimentin. In in vitro study, PT pretreatment could inhibite TGF-β1-induced alteration in the expression of E-cadherin, Fibronectin, α-SMA and vimentin. Moreover, PT was found to induce autophagy in NRK-52E cell, in which LC3-II expression was significantly enhanced in combined treatment with TGF-β1. Taken together, we found a new nephro-protective meachanism of PT through inhibition of TGF-β1-induced EMT by autophagy.

    中文摘要 III 英文摘要 V 致謝 IX 目錄 XI 圖目錄 XIV 第一章 序論1 第二章 文獻探討2 1. 尿酸合成與代謝機轉 2 2. 高尿酸血症成因與相關疾病3 3. 高尿酸血症造成腎臟疾病的機轉4 4. 上皮細胞間質轉換Epithelial Mesenchymal Transition (EMT)5 5. 高尿酸血症動物及細胞模式6 6. 自體吞噬與腎臟纖維化之關聯8 7. 微生物及發酵產物降低高尿酸血症潛能9 8. 紫檀芪(Pterostillbene) 降低高尿酸血症及預防腎病變的潛能10 第三章 研究目的12 第四章 研究架構13 第五章 研究項目14 1. 微生物發酵及紫檀芪產物治療Potassium Oxonate (PO) 誘發之高尿酸血症模式:14 2. 微生物發酵產物及紫檀芪預防高尿酸血症動物模式: 15 3. 微生物發酵產物急毒性動物試驗16 4. 紫檀芪預防尿酸性腎臟病動物模式:17 5. 紫檀芪抗腎臟細胞纖維化細胞模式:18 第六章 材料方法19 1. 研究材料19 1.1 細胞株19 1.2 常用試劑19 1.3 常用溶液20 1.4 常用儀器21 1.5 常用耗材22 2. 研究方法22 2.1 動物飼育管理22 2.2 動物馴化及檢疫23 2.3 治療高尿酸血症小鼠/預防高尿酸血症小鼠模式/尿酸性腎臟病模式及血清尿酸值分析23 2.4 尿酸濃度分析24 2.5 血清和尿液生化值分析24 2.6 Creatinine和BUN清除率計算 24 2.7 肝臟xanthine oxidase (XOD) 活性試驗25 2.8 腎臟組織切片及免疫組織染色分析25 2.9 腎臟組織表皮細胞間質轉化EMT相關蛋白表現25 2.10 腎臟免疫組織染色 (Immunohistochemistry)25 2.11 纖維化染色法Masson’s Trichrome Stain26 2.12 細胞解凍和冷凍 26 2.13 正常大鼠腎臟近端小管上皮細胞NRK-52E細胞培養及處理 27 2.14 細胞存活率Trypan blue dye exclusion assay 27 2.15 細胞蛋白質之萃取 28 2.16 西方墨點法 (Western blotting assay)28 2.17 免疫螢光染色 (Immunofluorescence) 28 2.18 自體吞噬分析( Autophagy analysis) 29 2.19 統計分析29 第七章 實驗結果30 第一節 微生物發酵產物治療小鼠高尿酸血症30 第二節 微生物發酵產物預防小鼠高尿酸血症31 第三節 微生物發酵產物動物急毒性評估32 第四節 紫檀芪治療小鼠高尿酸血症33 第五節 紫檀芪預防小鼠高尿酸血症33 第六節 紫檀芪預防小鼠尿酸性腎病變33 第七節 紫檀芪與TGF-β1對於NRK-52E細胞之毒性的劑量效應 36 第八節 紫檀芪預防TGF-β1誘導NRK-52E細胞型態的改變及EMT蛋白表現影響36 第九節 紫檀芪與TGF-β1對NRK-52E誘發自體吞噬現象37 第八章 討論38 第九章 結論43 第十章 參考文獻44 第十一章 附錄49

    Anzai N, Kanai Y, Endou H. 2007. New insights into renal transport of urate. Current opinion in rheumatology 19:151-157.

    Badid C, Desmouliere A, Babici D, Hadj-Aissa A, McGregor B, Lefrancois N, et al. 2002. Interstitial expression of alpha-sma: An early marker of chronic renal allograft dysfunction.

    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 17:1993-1998.
    Burns WC, Thomas MC. 2010. The molecular mediators of type 2 epithelial to mesenchymal transition (emt) and their role in renal pathophysiology. Expert reviews in molecular medicine 12:e17.

    Carew RM, Wang B, Kantharidis P. 2012. The role of emt in renal fibrosis. Cell and tissue research 347:103-116.

    Chen RJ, Ho CT, Wang YJ. 2010. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Molecular nutrition & food research 54:1819-1832.

    Chen Z, Wang Z, He X, Guo X, Li W, Zhang B. 2008. Uricase production by a recombinant hansenula polymorpha strain harboring candida utilis uricase gene. Applied microbiology and biotechnology 79:545-554.

    Correa-Costa M, Braga TT, Semedo P, Hayashida CY, Bechara LR, Elias RM, et al. 2011. Pivotal role of toll-like receptors 2 and 4, its adaptor molecule myd88, and inflammasome complex in experimental tubule-interstitial nephritis. PloS one 6:e29004.

    Dalbeth N, House ME, Gamble GD, Pool B, Horne A, Purvis L, et al. 2014. Influence of the abcg2 gout risk 141 k allele on urate metabolism during a fructose challenge. Arthritis research & therapy 16:R34.

    Daoussis D, Panoulas V, Toms T, John H, Antonopoulos I, Nightingale P, et al. 2009. Uric acid is a strong independent predictor of renal dysfunction in patients with rheumatoid arthritis. Arthritis research & therapy 11:R116.

    De Rechter S, Decuypere JP, Ivanova E, van den Heuvel LP, De Smedt H, Levtchenko E, et al. 2015. Autophagy in renal diseases. Pediatric nephrology.
    de Windt FE, Wagemaker MJ, Op den Camp HJ, van der Drift C. 2002. Purine degradation in the edible mushroom agaricus bisporus. Folia microbiologica 47:672-676.

    Ding Y, Choi ME. 2014. Regulation of autophagy by tgf-beta: Emerging role in kidney fibrosis. Seminars in nephrology 34:62-71.

    Ding Y, Kim S, Lee SY, Koo JK, Wang Z, Choi ME. 2014. Autophagy regulates tgf-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. Journal of the American Society of Nephrology : JASN 25:2835-2846.

    Diwan V, Mistry A, Gobe G, Brown L. 2013. Adenine-induced chronic kidney and cardiovascular damage in rats. Journal of pharmacological and toxicological methods 68:197-207.

    Dong Z. 2014. Introduction: Autophagy in kidneys. Seminars in nephrology 34:1.
    Feig DI. 2009. Uric acid: A novel mediator and marker of risk in chronic kidney disease? Current opinion in nephrology and hypertension 18:526-530.

    Feng J, Li X, Yang X, Zhang C, Yuan Y, Pu J, et al. 2010. A new practical system for evaluating the pharmacological properties of uricase as a potential drug for hyperuricemia. Archives of pharmacal research 33:1761-1769.

    Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. 2009. Ulk1.Atg13.Fip200 complex mediates mtor signaling and is essential for autophagy. The Journal of biological chemistry 284:12297-12305.

    Glick D, Barth S, Macleod KF. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of pathology 221:3-12.

    Gutman AB, Yu TF. 1968. Uric acid nephrolithiasis. The American journal of medicine 45:756-779.
    Hediger MA, Johnson RJ, Miyazaki H, Endou H. 2005. Molecular physiology of urate transport. Physiology 20:125-133.

    Hokazono H, Omori T, Yamamoto T, Akaoka I, Ono K. 2010. Effects of a fermented barley extract on subjects with slightly high serum uric acid or mild hyperuricemia. Bioscience, biotechnology, and biochemistry 74:828-834.

    Hsu WH, Lee BH, Liao TH, Hsu YW, Pan TM. 2012. Monascus-fermented metabolite monascin suppresses inflammation via ppar-gamma regulation and jnk inactivation in thp-1 monocytes. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 50:1178-1186.

    Jalal DI, Chonchol M, Chen W, Targher G. 2013. Uric acid as a target of therapy in ckd. American journal of kidney diseases : the official journal of the National Kidney Foundation 61:134-146.

    Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA. 2013. Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

    Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME. 2012. Autophagy promotes intracellular degradation of type i collagen induced by transforming growth factor (tgf)-beta1. The Journal of biological chemistry 287:11677-11688.

    Kim WY, Nam SA, Song HC, Ko JS, Park SH, Kim HL, et al. 2012. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology 17:148-159.

    Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D. 2011. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of sirt1 in diabetic wistar fatty (fa/fa) rats: A model of type 2 diabetes. Experimental diabetes research 2011:908185.

    Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. 2013. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clinical science 124:153-164.

    Kutzing MK, Firestein BL. 2008. Altered uric acid levels and disease states. The Journal of pharmacology and experimental therapeutics 324:1-7.

    Lan HY. 2003. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Current opinion in nephrology and hypertension 12:25-29.

    Lee MF, Liu ML, Cheng AC, Tsai ML, Ho CT, Liou WS, et al. 2013. Pterostilbene inhibits dimethylnitrosamine-induced liver fibrosis in rats. Food chemistry 138:802-807.

    Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ. 2010. Resveratrol inhibits renal fibrosis in the obstructed kidney: Potential role in deacetylation of smad3. The American journal of pathology 177:1065-1071.

    Li M, Yang D, Mei L, Yuan L, Xie A, Yuan J. 2014. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PloS one 9:e105577.

    Li R, Wang Y, Liu Y, Chen Q, Fu W, Wang H, et al. 2013. Curcumin inhibits transforming growth factor-beta1-induced emt via ppargamma pathway, not smad pathway in renal tubular epithelial cells. PloS one 8:e58848.

    Lin VC, Tsai YC, Lin JN, Fan LL, Pan MH, Ho CT, et al. 2012. Activation of ampk by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. Journal of agricultural and food chemistry 60:6399-6407.

    Liu Y. 2011. Cellular and molecular mechanisms of renal fibrosis. Nature reviews Nephrology 7:684-696.

    Mannal PW, Alosi JA, Schneider JG, McDonald DE, McFadden DW. 2010. Pterostilbene inhibits pancreatic cancer in vitro. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract 14:873-879.

    Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, et al. 2002. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. American journal of physiology Renal physiology 282:F991-997.

    McCormack D, McFadden D. 2012. Pterostilbene and cancer: Current review. The Journal of surgical research 173:e53-61.

    Meng XM, Chung AC, Lan HY. 2013. Role of the tgf-beta/bmp-7/smad pathways in renal diseases. Clinical science 124:243-254.

    Mizushima N. 2010. The role of the atg1/ulk1 complex in autophagy regulation. Current opinion in cell biology 22:132-139.

    Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. 2006a. A causal role for uric acid in fructose-induced metabolic syndrome. American journal of physiology Renal physiology 290:F625-631.

    Nakagawa T, Mazzali M, Kang DH, Sanchez-Lozada LG, Herrera-Acosta J, Johnson RJ. 2006b. Uric acid--a uremic toxin? Blood purification 24:67-70.

    Nuhu Alam KNY, Youn Jeong Cha, Jeong Hwa Kim, Kyung Rim Lee and Tae Soo Lee. 2011. Appraisal of the antioxidant, phenolic compounds
    concentration, xanthine oxidase and tyrosinase
    inhibitory activities of pleurotus salmoneostramineus. African Journal of Agricultural Research 6:9.

    Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R.
    2008. Elevated uric acid increases the risk for kidney disease. Journal of the American Society of Nephrology : JASN 19:2407-2413.

    Pittman JR, Bross MH. 1999. Diagnosis and management of gout. American family physician 59:1799-1806, 1810.

    Riche DM, McEwen CL, Riche KD, Sherman JJ, Wofford MR, Deschamp D, et al. 2013. Analysis of safety from a human clinical trial with pterostilbene. Journal of toxicology 2013:463595.

    Riegersperger M, Covic A, Goldsmith D. 2011. Allopurinol, uric acid, and oxidative stress in cardiorenal disease. International urology and nephrology 43:441-449.

    Rothenbacher D, Primatesta P, Ferreira A, Cea-Soriano L, Rodriguez LA. 2011. Frequency and risk factors of gout flares in a large population-based cohort of incident gout.
    Rheumatology 50:973-981.

    Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, et al. 2013. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. American journal of physiology Renal physiology 304:F471-480.

    Sakurai H. 2013. Urate transporters in the genomic era. Current opinion in nephrology and hypertension 22:545-550.

    Shi YW, Wang CP, Liu L, Liu YL, Wang X, Hong Y, et al. 2012a. Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. Molecular nutrition & food research 56:1433-1444.

    Shi YW, Wang CP, Wang X, Zhang YL, Liu L, Wang RW, et al. 2012b. Uricosuric and nephroprotective properties of ramulus mori ethanol extract in hyperuricemic mice. Journal of ethnopharmacology 143:896-904.

    Steele TH. 1973. Urate secretion in man: The pyrazinamide suppression test. Annals of internal medicine 79:734-737.

    Tung YT, Hsu CA, Chen CS, Yang SC, Huang CC, Chang ST. 2010. Phytochemicals from acacia confusa heartwood extracts reduce serum uric acid levels in oxonate-induced mice: Their potential use as xanthine oxidase inhibitors. Journal of agricultural and food chemistry 58:9936-9941.

    Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, et al. 2010. E-cadherin expression is regulated by mir-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59:1794-1802.

    Wu XW, Muzny DM, Lee CC, Caskey CT. 1992. Two independent mutational events in the loss of urate oxidase during hominoid evolution. Journal of molecular evolution 34:78-84.

    Xiao Z, Chen C, Meng T, Zhang W, Zhou Q. 2016. Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-beta pathway on matrix metalloproteinase 7. Experimental biology and medicine 241:140-146.

    Yang Z, Xiaohua W, Lei J, Ruoyun T, Mingxia X, Weichun H, et al. 2010. Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells. American journal of physiology Renal physiology 299:F336-346.

    Zhou Y, Fang L, Jiang L, Wen P, Cao H, He W, et al. 2012. Uric acid induces renal inflammation via activating tubular nf-kappab signaling pathway. PloS one 7:e39738.

    下載圖示 校內:2021-02-18公開
    校外:2021-02-18公開
    QR CODE