| 研究生: |
徐慧嫺 Syu, Huei-Sian |
|---|---|
| 論文名稱: |
地震引發山崩:初始時間及破壞面之分析 Earthquake-Induced Landslide: Analysis of the Initiation-Time and Failure Surfaces |
| 指導教授: |
洪瀞
Hung, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 地震導致山崩 、Newmark塊體滑動分析 、有限元素法 、初始時間 、破壞面 |
| 外文關鍵詞: | Earthquake-induced landslide, Newmark’s sliding block analysis, Finite element analysis, Initiation time, Failure surfaces |
| 相關次數: | 點閱:110 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
劇烈地震的發生通常容易帶來嚴重的災害,而地震是引發山崩的原因之一。2016年四月,日本熊本地區發生Mw7.3的地震主震,誘發了大規模的山崩,並破壞了阿蘇大橋。由數位高程模型(DEMs)掃描阿蘇橋山崩前後地貌變化,發現阿蘇橋山崩的山崩機制可能有兩種。本研究為了分析阿蘇橋山崩的破壞行為與初始時間,利用兩種分析方法:Newmark塊體滑動分析以及有限元素(FEA)數值模擬軟體PLAXIS-2D,來進行山崩初始時間以及山崩滑動面預測。
為了驗證研究方法的可行性,利用1999集集地震引發草嶺山崩的案例為驗證對象。由於草嶺山崩為台灣規模最大且紀錄最完整之山崩事件,過去已經有眾多學者進行相關數值分析與力學實驗研究。因此,本研究蒐集過去草嶺山崩研究成果並進行整理,並利用1999年集集地震及2016年美濃地震對草嶺山崩的影響進行山崩初始滑動時間及可能滑動面的比對。利用本研究方法得到草嶺山崩的時間t=37.5~40秒,破壞面位置與草嶺山崩實際上觀察到的破壞面吻合,因此符合過去研究結果,並已驗證了方法可行性。
再來,本研究將塊體滑動分析以及有限元素法應用於阿蘇橋山崩的初始時間與滑動面。本研究結果顯示:(1) 阿蘇橋山崩初始時間為18.45~21秒之間 (2) 利用FEA推測滑動面位置,岩土剪力強度參數ϕ=35°和c=80kPa時與DEMs觀察到的滑動面最類似 (3) 阿蘇橋山崩之地質為火成岩類,由FEA得出之岩土剪力強度比學者建議強度略低,其原因可能為風化所導致 (4) 由FEA結果發現滑動面集中在山脊間,因此山崩破壞機制推測為受到主震作用下直接崩落
本研究所提出之方法說明了Newmark塊體滑動分析和有限元素法能夠有效且合理的推測山崩初始時間以及破壞面。因此,將本研究方法利用MATLAB GUIs設計成方便使用的應用程式,並提供能夠快速推測山崩初始時間的程式,以便後續研究與應用。
本研究在進行FEA模擬並未考慮垂直地震加速度,因此利用擬靜態分析評估垂直地震加速度對山崩的影響,同時考慮進不同垂直地震加速度方向來進行邊坡穩定性的分析,以驗證忽略垂直加速度可能導致邊坡滑動面的預測產生誤差。
A catastrophic earthquake can easily result in destructive disasters. It is well-known that earthquakes are one of the causes of landslides. On April 16, 2016, the main-shock of the Kumamoto earthquakes (Mw7.3) struck beneath the Kumamoto City and generated large-scale landslides around the Aso area. Among the landslides, the Aso-bridge landslide is the largest one.
According to topographical scanning of Digital Elevation Models (DEMs), the collapse of the Aso-bridge could suffer from two mechanisms. To analyze the initiation-time and failure behavior of the Aso-bridge landslide, this study utilizes two approaches: the Newmark’s sliding block method and a finite element analysis (FEA) program-PLAXIS-2D.
In order to ensure our research methods are practicable, this study makes use of a famous case – the Tsaoling landslide induced by the Chi-Chi earthquake, for verification. The results of this study show the landslide time is t=37.5~40 sec, and the obtained failure surface is close to the actual observed surface. Therefore, the results fit-well with previous studies and are thus the verified approaches for the study. Furthermore, this study also uses the data of the 1999 Chi-Chi earthquake and the 2016 Meinong earthquake to conduct further verification of the approaches to analyze landslide behavior and potential failure surface of the Tsaoling landslide.
Upon the verifications, this study applies the verified approaches to analyze the landslide initiation-time and landslide failure surface of the Aso-bridge landslide. The results show that (i). The initiation-time of the Aso-bridge landslide is between 18.45~21sec. (ii). The geometrical strength parameters are ϕ=35° and c=80kPa, and the failure surface is close to the actual observed surface predicted by DEMs. (iii). The geology of Aso-bridge is Igneous. The soil strength is slightly less than the peak value of 95 kPa reported, suggesting that the strength of the soil layers was reduced likely due to weathering. (iv). The Aso-bridge landslide was excited immediately from the ridge of the slope when the main-shock of the Kumamoto earthquake struck.
The study demonstrates that the Newmark’s sliding method and the finite element analysis (FEA) can be applied to analyze the landslide initiation-time and the landslide failure surface with a reasonable agreement.
Finally, since the vertical acceleration is not taken into account in the FEA, a pseudo-static analysis is used to evaluate the effect of the landslide considering the vertical acceleration as to verify the errors in predicting the failure surfaces of the landslide. A MATLAB GUI, a user-friendly Apps, which is convenient for rapidly predict the landslide initiation-time, has also been developed to facilitate subsequent research and application.
[1].Biot, M.A. (1941). General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12, p. 155-164.
[2].Chen, T. C., Lin, M. L., Wang, K. L. (2014). Landslide Seismic Signal Recognition and Mobility for an Earthquake-Induced Rockslide in Tsaoling, Taiwan. Engineering Geology, 171, p.31-44.
[3].Chang, K. J., Wei, S. K., Chen, R. F., Chan, Y. C., Tsai, P. W., Kuo, C. Y. (2013). Empirical Modal Decomposition of Near Field Seismic Signals of Tsaoling Landslide. Earthquake-Induced Landslides, p.421-430. Springer Berlin Heidelberg.
[4].Deng, D.P., Li, L., Zhao, L.H. (2014). Research on Quasistatic Method of Slope Stability Analysis during Earthquake. Journal of Central South University (Science and Technology), Vol.45 no.10, p.3579-3587.
[5].Dong, J. J., Yang, C. M., Yu, W. L., Lee, C. T., Miyamoto, Y., Shimamoto, T. (2013). Velocity-Displacement Dependent Friction Coefficient and the Kinematics of Giant Landslide. In Earthquake-Induced Landslides. Springer Berlin Heidelberg, p. 397-403.
[6].Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J., Chen, T.C., Milliman, J., Colin, P.S.(2004). Earthquake-Triggered Increase in Sediment Delivery from An Active Mountain belt. Geology, 32, p. 733-736.
[7].Faris, F., Fawu, W. (2014). Investigation of the Initiation Mechanism of an Earthquake-Induced Landslide during Rainfall: A Case Study of the Tandikat Landslide, West Sumatra, Indonesia. Geoenvironmental Disasters, no.1, p1-18.
[8].Fleming, R.W., Johnson, A.M. (1994). Landslides in Colluvium. U.S. Geological Survey. p. 1-24.
[9].Huang, C. C., Lee, Y. H., Liu, H. P., Keefer, D. K., Jibson, R. W. (2001). Influence of Surface-Normal Ground Acceleration on the Initiation of the Jih-Feng-Erh-Shan Landslide during the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91(5), p.953-958.
[10].Hung, J. J., Lee, C. T., Lin, M. L. (2002). Tsao-ling Rockslides, Taiwan. Reviews in Engineering Geology, 15, p.91-116.
[11].Ingles, J., Darrozes, J., Soula, J. C. (2006). Effects of The Vertical Component of Ground Shaking on Earthquake-Induced Landslide Displacements using Generalized Newmark Analysis. Engineering Geology, 86(2), p.134-147.
[12].JMA. (2016). About the Earthquake in the Kumamoto Area of Kumamoto Prefecture, around 21:26 April 14, 2016. Japan Meteorological Agency (in Japanese).
[13].Jibson,R.W. (1993). Predicting Earthquake-Induced Landslide Displacements using Newmark’s Sliding Block Analysis. Transportation Research Record, no. 1411, p. 9-17.
[14].Jibson, R.W. (2007). Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, (91).p. 209-218.
[15].Kao, H., Kan, C. W., Chen, R. Y., Chang, C. H., Rosenberger, A., Shin, T. C., Shin.,T.C., Leu, P.L., Liang, W. T. (2012). Locating, Monitoring, and Characterizing Typhoon-Induced Landslides with Real-Time Seismic Signals. Landslides, 9(4), p.557-563.
[16].Kuo, C. Y., Tai, Y. C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R. F., Chang, K. J. (2009). Simulation of Tsaoling Landslide, Taiwan, Based on Saint Venant Equations over General Topography. Engineering Geology, 104(3), p.181-189.
[17].Khazai, B., Sitar, N. (2003). Evaluation of Factors Controlling Earthquake-Induced Landslides Caused by Chi-Chi Earthquake and Comparison with The Northridge and Loma Prieta Events. Engineering Geology, 71(1), p79-95.
[18].Keefer, D. (2000). Statistical Analysis of an Earthquake-Induced Landslide Distribution – The 1989 Loma Prieta, California Event. Engineering Geology, (58), p.231-249.
[19].Keefer, D. (1984). Landslides Caused by Earthquakes. Geological Society of America Bulletin, v. 95, p. 406-421.
[20].Ling, H., Ling, H.I., Kawabata, T. (2014). Revisiting Nigawa Landslide of the 1995 Kobe Earthquake. Geotechnique, 64, No. 5, p.400-404.
[21].Lee, W. H. K., Shin, T. C., Kuo, K. W., Chen, K. C., & Wu, C. F. (2001). CWB Free-Field Strong-Motion Data from the 921 Chi-Chi Earthquake: Processed Acceleration Files on CD-ROM. Strong-Motion Data Series CD-001, Seismological Observation Center, Central Weather Bureau.
[22].Lee, C.N. (2001). Preliminary Study on the Tsao-ling Landslide Area under Earthquake. Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei.
[23].Ling, H.I. Leshchinsky, D.(1995). Seismic Performance of Simple Slopes. Soils and Foundations, Tokyo, Japan, Vol. 35, No. 2, p. 85-94.
[24].MATLAB. (2015). Creating Graphical User Interface, R2015b.
[25].Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., Lee, C.T. (2009). Dynamic Weakening of Bedding-Parallel Fault Gouge as A Possible Mechanism for Catastrophic Tsaoling Landslide Induced by 1999 Chi-Chi Earthquake. The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, p. 398–401.
[26].Meunier, P., Hovius, N., Haines, J.A. (2008). Topographic Site Effects and The Location of Earthquake-Induced Landslides, Earth and Planetary Science Letters, vol. 275, Issues 3-4, p. 221-232.
[27].Mikami, M., Kunimura, S., Okui, Y., Wu, X., Takebayashi, T. (2004). Evaluation of The Strength Property of Rocks Focused on The Deformations in Tunneling. Journal of the Rock Mechanics, 33th, Japan Society of Civil Engineer, p. 1-6 (in Japanese).
[28].NCREE. (2016), February 6, 2016 (local time) ML-6.4 Meinong Earthquake Kaohsiung City, Taiwan, report.
[29].Nippon Expressway Company Limited. (2007). Vol. 2, Chapter 4, p.7-13.
[30].Nguyen, K.V., Gatmiri, B. (2007). Evaluation of Seismic Ground Motion Induced by Topographic Irregularity. Soil Dynamics and Earthquake Engineering. 27(2), p.183-188.
[31].Newmark, N.M. (1965). Effects of Earthquakes on Dams and Embankments. Geotechnique, 15 (2), p.139-160.
[32].PLAXIS. (2015). Reference and Material Models Manual. Plaxis bv, Netherlands.
[33].Rathje, M. E., Bray, D. J. (2001). One and Two Dimensional Seismic Analysis of Solid Waste Landfills. Canadian Geotechnical Journal, vol.38, p.850-862.
[34].Sepúlveda, S. A., Murphy, W., Jibson, R. W., Petley, D. N. (2005). Seismically Induced Rock Slope Failures Resulting From Topographic Amplification of Strong Ground Motions: The Case of Pacoima Canyon, California. Engineering geology, 80(3), p.336-348.
[35].Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., Chu, H. T. (2009). The Tsaoling Landslide Triggered by The Chi-Chi Earthquake, Taiwan: Insights From a Discrete Element Simulation. Engineering Geology, 106(1), p.1-19.
[36].Trifunac, M. D. (1971). Zero Baseline Correction of Strong-Motion Accelerograms. Bulletin of the Seismological Society of America. 61.5 p.1201-1211.
[37].USGS. (2016). Earthquake Hazards Program. M7.0 – 1km WSW of Kumamoto-shi, Japan.
[38].USGS. (2004). Landslide Types and Processes.
[39].Wu, J. H., Chen, C. H. (2011).Application of DDA to Simulate Characteristics of The Tsaoling Landslide. Computers and Geotechnics, 38(5), p.741-750.
[40].West, T. R.(2010). Geology Applied to Engineering. Waveland Press. p.83.
[41].Wilson, R. C., Keefer, D. K. (1983). Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake. Bulletin of the Seismological Society of America, 73(3), p.863-877.
[42].Yang, C. M., Yu, W. L., Dong, J. J., Kuo, C. Y., Shimamoto, T., Lee, C. T.,Togo, T, Miyamoto, Y. (2014). Initiation, Movement, and Run-out of The Giant Tsaoling Landslide—What Can We Learn from A Simple Rigid Block Model and A Velocity–Displacement Dependent Friction Law? Engineering Geology, 182, p.158-181.
[43].Yamada, M., Kumagai, H., Matsushi, Y., Matsuzawa, T. (2013). Dynamic Landslide Processes Revealed by Broadband Seismic Records. Geophysical Research Letters, 40(12), p.2998-3002.
[44].Zhou, J. W., Cui, P.,Yang, X. G. (2013). Dynamic Process Analysis for the Initiation and Movement of the Donghekou Landslide-Debris Flow Triggered by the Wenchuan Earthquake. Journal of Asian Earth Sciences, 76, p.70-84.
[45].Zienkiewicz, O. C., Humpheson, C., Lewis, R.W. (1977). Associated and Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics. Geotechnique, 27.1: p.101-102.