簡易檢索 / 詳目顯示

研究生: 呂政學
Lu, Cheng-Hsueh
論文名稱: 氮化銦鎵/氮化鎵多重量子井發光二極體之內部量子效率強化
Improvement of internal quantum efficiency for InGaN/GaN multiple quantum wells based light-emitting diodes
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 173
中文關鍵詞: 發光二極體內部量子效率量子點表面電漿子量子侷限史塔克效應
外文關鍵詞: Light-emitting diode, Internal quantum efficiency, Quantum dot, Surface plasmon, Quantum confined Stark effect
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究奠基於利用有機金屬化學氣相沈積法,所製作的氮化銦鎵/氮化鎵多重量子井系列藍綠光發光二極體系統,針對多重量子井的磊晶過程、磊晶片製作完成後、乃至於晶粒製程階段,分別提出了可有效提升發光二極體內部量子效率的方法,以改善元件發光效能為目標。研究中引入的技術及主要概念包括:(1)在量子井中製作高密度尺寸極小的富銦量子點、(2)導入表面電漿子共振效應與激子進行能量耦合,以及(3)量子侷限史塔克效應的補償。
    本論文依研究主題分為四大部分,首先,在氮化銦鎵量子井成長時控制其動力學因素,透過旋節相分離機制可獲得高密度(2×1012 cm-2)且尺寸極小(~2.3奈米)的富銦量子點。此高密度極小富銦量子點具有強大的量子侷限效應,保護了載子免於被熱活化至非輻射性複合中心,內部量子效率得到了18%顯著的提升。此外,吾人並發現具有高密度富銦量子點的氮化銦鎵量子井,其量子井/阻障層界面較為平滑,且缺陷數較低,所製作的綠光發光二極體封裝體在光輸出上也被增強了約10%。因此,製作高密度的富銦量子點作為發光中心,特別是在高銦含量的綠光發光二極體應用上,突顯了其應用價值。
    第二部分,吾人製作了二維週期性奈米銀金屬陣列,導入綠光發光二極體的p-GaN層之中,透過有效的激子-表面電漿電磁極化子共振耦合效應,同時提升了內部量子效率以及光萃取率。由p-GaN層表面激發並量測其光激發光光譜,可獲得最大2.8倍的光激發光強度增益。由於整體p-GaN層的厚度毋須被犧牲,且金屬層可經由此結構設計,被製作在相當接近發光中心的位置,因此可有效克服因指數倍率衰減的表面電漿子電磁場,而快速衰弱的耦合效率問題。本結構設計因此可被應用於高效率氮化銦鎵/氮化鎵多重量子井系列的發光二極體之研製。
    第三部分則延續第二部分的設計概念,吾人實現了一種透過侷域表面電漿子共振耦合效應,來強化藍光發光二極體的結構設計及製作方法。主要的藍光發光強度被增益了約3.6倍,且伴隨發光波長向表面電漿子共振特徵波長些微紅移。最大的發光增益量約為4.4倍,出現在470奈米處,符合穿透光譜中展現出來的表面電漿子共振特徵波長。載子的生命期從897 ps減少至670 ps,伴隨著約1.5倍的輻射複合速率提升,證明了有效地侷域表面電漿子共振耦合效應的發生。此外,內部量子效率被有效提升了約53 %。在實驗上,此製程及結構設計概念可用以實現大面積製作的高效率電漿子強化發光二極體,藍光發光的氮化銦鎵量子井內部量子效率可獲得提升。
    最後一部分,吾人針對綠光發光的發光二極體磊晶片,設計一治具,可對氮化鎵磊晶結構施加一外部應力。由拉曼光譜分析結果,吾人發現此外部施加的應力與樣品曲率之關係呈現指數關係。此外,利用微光激發光光譜分析樣品在施加應力前後的光學特性,發現以此設計對樣品進行外部拉伸應力的施加,可有效地削弱氮化銦鎵量子井中所受到的壓應力,抵銷因壓應力所產生的內部壓電場;意即量子侷限史塔克效應因外部拉伸應力的施加而獲得補償,雖然發光波長產生藍移現象,然而內部量子效率將因此得以改善。吾人也針對特定發光二極體晶粒元件,量測其施加應力前後的發光特性,發現此外部應力可成功增強光輸出功率,提升倍率約為12.4 %,並且不會明顯改變其元件操作之起始電壓。
    本論文呈現的研究成果可提供作為提升發光二極體內部量子效率的有效方法依據,包括由量子井磊晶階段製作高密度尺寸極小的富銦量子點;磊晶片完成後可利用本論文提出的結構設計概念,來引入表面電漿子共振耦合效應;最後若對具有內部應力的磊晶樣品施加一外部應力形變,可進一步有效補償其量子侷限史塔克效應,內部量子效率亦可獲得提升。

    This research is focused on light emission efficiency enhancement of InGaN/GaN multiple quantum wells (MQWs) based blue or green light-emitting diodes (LEDs), which were grown by metalorganic chemical vapor deposition (MOCVD). With respect to the major manufacturing procedures of the LEDs from epitaxial growth of MQWs, wafer fabrication to chip fabrication, the corresponding methods are proposed and demonstrated to improve internal quantum efficiency (IQE) for better lighting performance. The main techniques and concepts include (1) fabrication of high-density ultra-small In-rich quantum dots (QDs) embedded in InGaN QWs, (2) surface plasmon (SP) resonance coupling with excitons in the QWs, and (3) compensation of quantum confined Stark effect (QCSE) by external stress. The achievements proposed in this research provide effective schemes to improve the IQE for the InGaN/GaN MQWs based LEDs.

    第1章 緒論 1 1-1 前言 1 1-2 研究動機及目的 5 1-3 論文架構說明 6 第2章 理論基礎與文獻回顧 7 2-1 氮基三五族半導體材料特性 7 2-1.1 晶體結構 7 2-1.2 應變與晶格匹配 9 2-1.3 III族氮化物材料中的極化效應及量子侷限史塔克效應 12 2-2 發光二極體(LIGHT-EMITTING DIODE) 19 2-2.1 發光二極體基本原理 19 2-2.2 發光二極體輻射光譜 23 2-2.3 發光二極體之量子效率 27 2-3 量子結構簡介 29 2-3.1 奈米材料 29 2-3.2 量子尺寸及侷限效應 30 2-3.3 量子點原理及製作 32 2-3.4 氮化銦鎵量子點的形成機制及文獻回顧 35 2-4 表面電漿子 48 2-4.1 表面電漿電磁極化子(SPP) [60-64] 52 2-4.2 侷域表面電漿子(LSP)[63-66] 62 2-4.3 表面電漿子強化發光二極體發光效率之機制[72-74] 67 2-4.4 表面電漿子效應強化發光二極體文獻回顧 69 第3章 實驗方法與步驟 82 3-1 發光二極體製作 82 3-1.1 氮化鎵系列發光二極體磊晶成長 82 3-1.2 發光二極體(LED)晶粒製作 83 3-2 表面電漿子強化發光二極體之製作 84 3-2.1 電子束微影製程 84 3-2.2 感應耦合電漿反應性離子蝕刻系統 86 3-2.3 電子束蒸鍍 87 3-3 微結構、成分及表面分析 88 3-3.1 掃瞄式電子顯微鏡 (Scanning Electron Microscope, SEM) 88 3-3.2 原子力顯微鏡 (atomic force microscopy, AFM) 89 3-3.3 高解析穿透式電子顯微鏡 (high resolution transmission electron microscopy, HRTEM) 90 3-4 光學性質分析 92 3-4.1 光致螢光激發光譜 (Photoluminescence, PL) 92 3-4.2 微觀拉曼及微觀光致螢光光譜儀 (μ-RAMAN and μ-PL ) 94 3-4.3 時間解析光致螢光量測 (Time-resolved PL, TRPL ) 95 3-4.4 紫外光-可見光穿透光譜儀 (UV-Vis spectrometer) 96 3-5 發光二極體元件特性量測 97 3-5.1 電流-電壓量測 (Current-Voltage, I-V) 97 3-5.2 光輸出-電流量測 (Light output-Current, L-I) 97 第4章 結果與討論 98 4-1 製作高密度氮化銦鎵量子點強化綠光發光二極體 98 4-1.1 前言 98 4-1.2 實驗方法 99 4-1.3 結果與討論 100 4-1.4 小結 104 4-2 利用表面電漿電磁極化子(SPP)強化綠光發光二極體 111 4-2.1 前言 111 4-2.2 實驗方法 113 4-2.3 結果與討論 114 4-2.4 小結 118 4-3 利用侷域表面電漿子(LSP)強化藍光發光二極體 124 4-3.1 前言 124 4-3.2 實驗方法 125 4-3.3 結果與討論 126 4-3.4 小結 131 4-4 施加外力補償量子侷限史塔克效應以提升綠光發光二極體之發光效率 139 4-4.1 前言 139 4-4.2 實驗方法 140 4-4.3 結果與討論 142 4-4.4 小結 144 第5章 總結論 153 參考文獻 156 著作 171

    1. 中華民國光電學會, LED工程師基礎概念與應用 (五南圖書, 臺北市, 2012).
    2. 陳隆建, LED元件與產業概況 (五南圖書, 臺北市, 2012).
    3. 郭浩中, 賴芳儀, and 郭守義, LED原理與應用 (五南圖書, 台北市, 2013).
    4. H. Morkoç, "General Properties of Nitrides," in Nitride Semiconductor Devices(Wiley-VCH Verlag GmbH & Co. KGaA, 2013), pp. 1-61.
    5. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Applied Physics Letters 98, - (2011).
    6. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," Journal of Crystal Growth 312, 1311-1315 (2010).
    7. H. Hung-Wen, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, "Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface," Photonics Technology Letters, IEEE 17, 983-985 (2005).
    8. H. K. Cho, J. Y. Lee, C. S. Kim, and G. M. Yang, "Influence of strain relaxation on structural and optical characteristics of InGaN/GaN multiple quantum wells with high indium composition," Journal of Applied Physics 91, 1166-1170 (2002).
    9. J. S. Speck, and S. J. Rosner, "The role of threading dislocations in the physical properties of GaN and its alloys," Physica B: Condensed Matter 273–274, 24-32 (1999).
    10. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature 406, 865-868 (2000).
    11. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, "Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect," Applied Physics Letters 73, 1691-1693 (1998).
    12. J.-H. Ryou, and R. D. Dupuis, "Introduction: Optics in LEDs for Lighting," Opt. Express 19, A897-A899 (2011).
    13. Y.-L. Lai, "Microstructure and optical properties of InGaN/GaN multiple quantum wells comprised of InGaN dots," in Department of Materials Science and Engineering(National Cheng Kung University, Tainan, Taiwan, 2005).
    14. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006).
    15. J. W. Matthews, and A. E. Blakeslee, "Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers," Journal of Crystal Growth 32, 265-273 (1976).
    16. F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B 56, R10024-R10027 (1997).
    17. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics 85, 3222-3233 (1999).
    18. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics 87, 334-344 (2000).
    19. S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, "III–nitrides: Growth, characterization, and properties," Journal of Applied Physics 87, 965-1006 (2000).
    20. J. L. Sánchez-Rojas, J. A. Garrido, and E. Muñoz, "Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices," Physical Review B 61, 2773-2778 (2000).
    21. N. A. Shapiro, H. Feick, W. Hong, M. Cich, R. Armitage, and E. R. Weber, "Luminescence energy and carrier lifetime in InGaN/GaN quantum wells as a function of applied biaxial strain," Journal of Applied Physics 94, 4520-4529 (2003).
    22. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect," Physical Review Letters 53, 2173-2176 (1984).
    23. 張立德, and 牟季美, 奈米材料與奈米結構 (滄海書局, 2002).
    24. A. P. Alivisatos, "Perspectives on the Physical Chemistry of Semiconductor Nanocrystals," The Journal of Physical Chemistry 100, 13226-13239 (1996).
    25. D. J. Eaglesham, and M. Cerullo, "Dislocation-free Stranski-Krastanow growth of Ge on Si(100)," Physical Review Letters 64, 1943-1946 (1990).
    26. I. N. Stranski, and L. Krastanow, "Sitzungsberichte d. Akad. d. Wissenschaften in Wien," Band 146, 797 (1937).
    27. Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, "Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001)," Physical Review Letters 65, 1020-1023 (1990).
    28. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, "Nature of strained InAs three‐dimensional island formation and distribution on GaAs(100)," Applied Physics Letters 64, 2727-2729 (1994).
    29. E. Kurtz, M. Schmidt, M. Baldauf, S. Wachter, M. Grün, D. Litvinov, S. K. Hong, J. X. Shen, T. Yao, D. Gerthsen, H. Kalt, and C. Klingshirn, "Properties and self-organization of CdSe:S quantum islands grown with a cadmium sulfide compound source," Journal of Crystal Growth 214–215, 712-716 (2000).
    30. S. Chichibu, K. Wada, and S. Nakamura, "Spatially resolved cathodoluminescence spectra of InGaN quantum wells," Applied Physics Letters 71, 2346-2348 (1997).
    31. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, "Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm," Applied Physics Letters 70, 981 (1997).
    32. C. Tessarek, S. Figge, T. Aschenbrenner, S. Bley, A. Rosenauer, M. Seyfried, J. Kalden, K. Sebald, J. Gutowski, and D. Hommel, "Strong phase separation of strained In_{x}Ga_{1-x}N layers due to spinodal and binodal decomposition: Formation of stable quantum dots," Physical Review B 83, 115316 (2011).
    33. I.-K. Park, M.-K. Kwon, S.-H. Baek, Y.-W. Ok, T.-Y. Seong, S.-J. Park, Y.-S. Kim, Y.-T. Moon, and D.-J. Kim, "Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots," Applied Physics Letters 87, 061906 (2005).
    34. I.-K. Park, M.-K. Kwon, J.-O. Kim, S.-B. Seo, J.-Y. Kim, J.-H. Lim, S.-J. Park, and Y.-S. Kim, "Green light-emitting diodes with self-assembled In-rich InGaN quantum dots," Applied Physics Letters 91, 133105 (2007).
    35. I.-K. Park, M.-K. Kwon, S.-B. Seo, J.-Y. Kim, J.-H. Lim, and S.-J. Park, "Ultraviolet light-emitting diodes with self-assembled InGaN quantum dots," Applied Physics Letters 90, 111116 (2007).
    36. I.-K. Park, M.-K. Kwon, C.-Y. Cho, J.-Y. Kim, C.-H. Cho, and S.-J. Park, "Effect of InGaN quantum dot size on the recombination process in light-emitting diodes," Applied Physics Letters 92, 253105 (2008).
    37. C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, "Self-assembled InGaN quantum dots grown by molecular-beam epitaxy," Applied Physics Letters 76, 1570 (2000).
    38. L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, J. F. Chen, T. Y. Tsai, Q. K. Xue, and S. C. Chen, "Growth of nanoscale InGaN self-assembled quantum dots," Journal of Crystal Growth 249, 144-148 (2003).
    39. Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, "Self-assembled InGaN quantum dots on GaN emitting at 520nm grown by metalorganic vapor-phase epitaxy," Journal of Crystal Growth 310, 2320-2325 (2008).
    40. M. Zhang, P. Bhattacharya, and W. Guo, "InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop," Applied Physics Letters 97, 011103 (2010).
    41. L. Wang, W. Zhao, W. Lv, L. Wang, Z. Hao, and Y. Luo, "The influence of underlying layer on morphology of InGaN quantum dots self-assembled by metal organic vapor phase epitaxy," physica status solidi (c) 9, 782-785 (2012).
    42. H. J. Kim, H. Na, S.-Y. Kwon, H.-C. Seo, H. J. Kim, Y. Shin, K.-H. Lee, D. H. Kim, H. J. Oh, S. Yoon, C. Sone, Y. Park, and E. Yoon, "Growth of In-rich InGaN/GaN quantum dots by metalorganic chemical vapor deposition," Journal of Crystal Growth 269, 95-99 (2004).
    43. I. h. Ho, and G. B. Stringfellow, "Solid phase immiscibility in GaInN," Applied Physics Letters 69, 2701-2703 (1996).
    44. S. Y. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998).
    45. R. Oliver, M. Kappers, C. Humphreys, and G. Briggs, "The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy," Journal of Crystal Growth 272, 393-399 (2004).
    46. T. Zhu, H. A. R. El-Ella, B. Reid, M. J. Holmes, R. A. Taylor, M. J. Kappers, and R. A. Oliver, "Growth and optical characterisation of multilayers of InGaN quantum dots," Journal of Crystal Growth 338, 262-266 (2012).
    47. R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, S. Yasin, J. H. Rice, J. D. Smith, and R. A. Taylor, "InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal," Applied Physics Letters 83, 755 (2003).
    48. H. H. Yao, T. C. Lu, G. S. Huang, C. Y. Chen, W. D. Liang, H. C. Kuo, and S. C. Wang, "InGaN self-assembled quantum dots grown by metal–organic chemical vapour deposition with growth interruption," Nanotechnology 17, 1713-1716 (2006).
    49. Q. Wang, T. Wang, J. Bai, A. G. Cullis, P. J. Parbrook, and F. Ranalli, "Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer," Journal of Applied Physics 103, 123522 (2008).
    50. Y.-L. Lai, C.-P. Liu, Y.-H. Lin, T.-H. Hsueh, R.-M. Lin, D.-Y. Lyu, Z.-X. Peng, and T.-Y. Lin, "Origins of efficient green light emission in phase-separated InGaN quantum wells," Nanotechnology 17, 3734-3739 (2006).
    51. L. Yen-Lin, L. Chuan-Pu, H. Tao-Hung, L. Yung-Hsiang, C. Hung-Chin, L. Ray-Ming, and C. Zheng-Quan, "The influence of quasi-quantum dots on the physical properties of blue InGaN/GaN multiple quantum wells," Nanotechnology 17, 4300 (2006).
    52. Y.-L. Lai, C.-P. Liu, and Z.-Q. Chen, "Tuning the emitting wavelength of InGaN/GaN superlattices from blue, green to yellow by controlling the size of InGaN quasi-quantum dot," Thin Solid Films 498, 128-132 (2006).
    53. S. Enoch, and N. Bonod, Plasmonics-From Basics to Advanced Topics (Springer Berlin Heidelberg, 2012).
    54. H. A. Atwater, "The Promise of PLASMONICS. (Cover story)," Scientific American 296, 56-63 (2007).
    55. Wikipedia contributors, "Chartres Cathedral," (Wikipedia, The Free Encyclopedia), http://en.wikipedia.org/w/index.php?title=Chartres_Cathedral&oldid=587942014, Accessed 10 January 2014 08:24 UTC.
    56. R. W. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," Proceedings of the Physical Society of London 18, 269 (1902).
    57. U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
    58. A. Hessel, and A. A. Oliner, "A New Theory of Wood?s Anomalies on Optical Gratings," Applied Optics 4, 1275-1297 (1965).
    59. M. L. Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics 5, 349-356 (2011).
    60. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988).
    61. S. Enoch, and N. Bonod, Plasmonics From Basics to Advanced Topics (Springer, New York, 2012).
    62. 林千又, "表面電漿子增強氮化銦鎵/氮化鎵多重量子井結構之自發性復合速率探討," in 物理研究所(國立中央大學, 桃園縣, 2007), p. 56.
    63. 吳民耀, and 劉威志, "表面電漿子理論與模擬," 物理雙月刊 28, 486-496 (2006).
    64. 邱國斌, and 蔡定平, "金屬表面電漿簡介," 物理雙月刊 28, 472-485 (2006).
    65. 洪健雄, 何拓利, 周榮華, and 陳寬任, "電漿子學原理與應用," 真空科技 25, 9-23 (2012).
    66. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1983).
    67. M. I. Stockman, "Nanoplasmonics: The physics behind the applications," Physics Today 64, 39-44 (2011).
    68. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Physical Review B 64, 235402 (2001).
    69. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," The Journal of Physical Chemistry B 107, 668-677 (2002).
    70. W. A. Murray, and W. L. Barnes, "Plasmonic Materials," Advanced Materials 19, 3771-3782 (2007).
    71. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles," Nano Letters 3, 1087-1090 (2003).
    72. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Physical Review B 60, 11564-11567 (1999).
    73. W. L. Barnes, "Light-emitting devices: Turning the tables on surface plasmons," Nature materials 3, 588-589 (2004).
    74. A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Physical Review B 66 (2002).
    75. E. Fermi, "Quantum Theory of Radiation," Reviews of Modern Physics 4, 87-132 (1932).
    76. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Applied Physics Letters 87, 071102 (2005).
    77. K. Okamoto, and Y. Kawakami, "High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics," IEEE Journal of Selected Topics in Quantum Electronics 15, 1199-1209 (2009).
    78. A. Köck, E. Gornik, M. Hauser, and W. Beinstingl, "Strongly directional emission from AlGaAs/GaAs light-emitting diodes," Applied Physics Letters 57, 2327 (1990).
    79. N. E. Hecker, R. A. Ho¨pfel, N. Sawaki, T. Maier, and G. Strasser, "Surface plasmon-enhanced photoluminescence from a single quantum well," Applied Physics Letters 75, 1577-1579 (1999).
    80. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature materials 3, 601-605 (2004).
    81. C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, "Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure," Applied Physics Letters 89, 203113 (2006).
    82. Y.-C. Lu, C.-Y. Chen, K.-C. Shen, D.-M. Yeh, T.-Y. Tang, and C. C. Yang, "Enhanced photoluminescence excitation in surface plasmon coupling with an InGaN∕GaN quantum well," Applied Physics Letters 91, 183107 (2007).
    83. D.-M. Yeh, C.-Y. Chen, Y.-C. Lu, C.-F. Huang, and C. C. Yang, "Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well," Nanotechnology 18, 265402 (2007).
    84. D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN∕GaN single-quantum-well light-emitting diode," Applied Physics Letters 91, 171103 (2007).
    85. Y.-C. Lu, C.-Y. Chen, D.-M. Yeh, C.-F. Huang, T.-Y. Tang, J.-J. Huang, and C. C. Yang, "Temperature dependence of the surface plasmon coupling with an InGaN∕GaN quantum well," Applied Physics Letters 90, 193103 (2007).
    86. K.-C. Shen, C.-Y. Chen, H.-L. Chen, C.-F. Huang, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, "Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating," Applied Physics Letters 93, 231111 (2008).
    87. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
    88. Y.-C. Lu, Y.-S. Chen, F.-J. Tsai, J.-Y. Wang, C.-H. Lin, C.-Y. Chen, Y.-W. Kiang, and C. C. Yang, "Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor," Applied Physics Letters 94, 233113 (2009).
    89. C.-F. Lu, C.-H. Liao, C.-Y. Chen, C. Hsieh, Y.-W. Kiang, and C. C. Yang, "Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling," Applied Physics Letters 96, 261104 (2010).
    90. K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, "Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling," Journal of Applied Physics 108 (2010).
    91. C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, "Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells," Nanotechnology 22, 475201 (2011).
    92. Y. Kuo, S.-Y. Ting, C.-H. Liao, J.-J. Huang, C.-Y. Chen, C. Hsieh, Y.-C. Lu, C.-Y. Chen, K.-C. Shen, C.-F. Lu, D.-M. Yeh, J.-Y. Wang, W.-H. Chuang, Y.-W. Kiang, and C. C. Yang, "Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode," Optics Express 19, A914-A929 (2011).
    93. Y. Kuo, H.-T. Chen, W.-Y. Chang, H.-S. Chen, C. C. Yang, and Y.-W. Kiang, "Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device," Optics Express 22, A155-A166 (2014).
    94. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Advanced Materials 20, 1253-1257 (2008).
    95. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, "Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN," Nanotechnology 21, 205201 (2010).
    96. C.-Y. Cho, K. S. Kim, S.-J. Lee, M.-K. Kwon, H. Ko, S.-T. Kim, G.-Y. Jung, and S.-J. Park, "Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN," Applied Physics Letters 99, 041107 (2011).
    97. C.-Y. Cho, S.-J. Lee, J.-H. Song, S.-H. Hong, S.-M. Lee, Y.-H. Cho, and S.-J. Park, "Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles," Applied Physics Letters 98, 051106 (2011).
    98. C.-Y. Cho, J.-J. Kim, S.-J. Lee, S.-H. Hong, K. J. Lee, S.-Y. Yim, and S.-J. Park, "Enhanced Emission Efficiency of GaN-Based Flip-Chip Light-Emitting Diodes by Surface Plasmons in Silver Disks," Applied Physics Express 5, 122103 (2012).
    99. S.-H. Hong, C.-Y. Cho, S.-J. Lee, S.-Y. Yim, W. Lim, S.-T. Kim, and S.-J. Park, "Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles," Opt. Express 21, 3138-3144 (2013).
    100. M.-K. Kwon, J.-Y. Kim, and S.-J. Park, "Enhanced emission efficiency of green InGaN/GaN multiple quantum wells by surface plasmon of Au nanoparticles," Journal of Crystal Growth 370, 124-127 (2013).
    101. H.-S. Chen, C.-F. Chen, Y. Kuo, W.-H. Chou, C.-H. Shen, Y.-L. Jung, Y.-W. Kiang, and C. C. Yang, "Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN," Applied Physics Letters 102, 041108-041104 (2013).
    102. A. J. Fischer, D. D. Koleske, and J. R. Wendt, "Surface plasmon enhanced emission from InGaN single-quantum-well light emitting diodes," 2009 OSA/CLEO/IQEC (2009).
    103. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. D. Negro, T. D. Moustakas, and R. Paiella, "Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays," Optics Express 18, 21322-21329 (2010).
    104. J. Henson, E. Dimakis, J. DiMaria, T. D. Moustakas, and R. Paiella, "Plasmon-Enhanced Light Emission from InGaN Quantum
    Wells Using Lithographically Defined Nanoparticle Arrays," OSA / CLEO/QELS 2010 (2010).
    105. J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, "Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays," Optics Letters 37, 79-81 (2012).
    106. J. Henson, J. C. Heckel, E. Dimakis, J. Abell, A. Bhattacharyya, G. Chumanov, T. D. Moustakas, and R. Paiella, "Plasmon enhanced light emission from InGaN quantum wells via coupling to chemically synthesized silver nanoparticles," Applied Physics Letters 95, 151109 (2009).
    107. T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, "Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster," Applied Physics Letters 95, 111112 (2009).
    108. J. Lin, A. Mohammadizia, A. Neogi, H. Morkoc, and M. Ohtsu, "Surface plasmon enhanced UV emission in AlGaN/GaN quantum well," Applied Physics Letters 97, 221104 (2010).
    109. S. G. Zhang, "Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes," Appl. Phys. Lett. 99, 181116 (2011).
    110. W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, "Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer," Applied Physics Letters 101, 142101-142105 (2012).
    111. Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, "Localized surface plasmon enhanced light-emitting devices," Journal of Materials Chemistry 22, 9481 (2012).
    112. Y. Lin, C. Xu, J. Li, G. Zhu, X. Xu, J. Dai, and B. Wang, "Localized Surface Plasmon Resonance-Enhanced Two-Photon Excited Ultraviolet Emission of Au-Decorated ZnO Nanorod Arrays," Advanced Optical Materials, n/a-n/a (2013).
    113. S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, "Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode," Solid-State Electronics 57, 90-92 (2011).
    114. G. Y. Mak, L. Zhu, Z. Ma, S. Y. Huang, E. Y. Lam, and H. W. Choi, "Plasmonically enhanced quantum-dot white-light InGaN light-emitting diode," Journal of Physics D: Applied Physics 44, 224016 (2011).
    115. H. Zhao, J. Zhang, G. Liu, and N. Tansu, "Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes," Applied Physics Letters 98, 151115 (2011).
    116. N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, "Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells," Scientific reports 2, 816 (2012).
    117. A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, "Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures," Applied Physics Letters 101, - (2012).
    118. C.-Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, "Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)," Applied Physics Letters 102, 211110-211114 (2013).
    119. L. W. Jang, D. W. Jeon, T. Sahoo, D. S. Jo, J. W. Ju, S. J. Lee, J. H. Baek, J. K. Yang, J. H. Song, A. Y. Polyakov, and I. H. Lee, "Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles," Optics Express 20, 2116-2123 (2012).
    120. L.-W. Jang, D.-W. Jeon, J.-W. Jeon, M. Kim, M.-K. Kim, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, M.-S. Jeong, Y.-H. Kim, and I.-H. Lee, "Photoluminescence Enhancement in GaN∕InGaN Multi-Quantum Well Structures as a Function of Quantum Well Numbers: Coupling Behaviors of Localized Surface Plasmon," Journal of The Electrochemical Society 159, H522 (2012).
    121. L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, "Investigation of Optical and Structural Stability of Localized Surface Plasmon Mediated Light-Emitting Diodes by Ag and Ag/SiO2 Nanoparticles," Advanced Functional Materials 22, 2728-2734 (2012).
    122. L.-W. Jang, D.-W. Jeon, T. Sahoo, A. Y. Polyakov, B. Saravanakumar, Y.-T. Yu, Y.-H. Cho, J.-K. Yang, and I.-H. Lee, "Energy coupling processes in InGaN/GaN nanopillar light emitting diodes embedded with Ag and Ag/SiO2 nanoparticles," Journal of Materials Chemistry 22, 21749 (2012).
    123. Y.-C. Chang, and C.-B. Tseng, "Surface Plasmon-Enhanced Spontaneous Emission from InGaN/GaN Multiple Quantum Wells by Indium Nanoparticles Fabricated Using Nanosphere Lithography," Plasmonics, 1-6 (2013).
    124. W. Yang, Y. He, L. Liu, and X. Hu, "Practicable alleviation of efficiency droop effect using surface plasmon coupling in GaN-based light emitting diodes," Applied Physics Letters 102, 241111-241115 (2013).
    125. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy (Springer, New York, 1996).
    126. S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness InGaN-AlGaN double‐heterostructure blue-light‐emitting diodes," Applied Physics Letters 64, 1687-1689 (1994).
    127. S. Nakamura, and G. Fasol, The blue laser diode : GaN based light emitters and lasers (Springer, New York, 1997).
    128. Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, "Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting," Journal of Applied Physics 105, 013117 (2009).
    129. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, "Dimensionality of excitons in laser-diode structures composed of In_{x}Ga_{1-x}N multiple quantum wells," Physical Review B 59, 10283-10288 (1999).
    130. J. H. Davies, "Elastic and piezoelectric fields around a buried quantum dot: A simple picture," Journal of Applied Physics 84, 1358-1365 (1998).
    131. T. Zywietz, J. r. Neugebauer, and M. Scheffler, "Adatom diffusion at GaN (0001) and (000-1) surfaces," Applied Physics Letters 73, 487 (1998).
    132. J. Neugebauer, "Ab initio Analysis of Surface Structure and Adatom Kinetics of Group-III Nitrides," physica status solidi (b) 227, 93-114 (2001).
    133. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Electric field dependence of optical absorption near the band gap of quantum-well structures," Physical Review B 32, 1043-1060 (1985).
    134. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, "“S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells," Applied Physics Letters 73, 1370-1372 (1998).
    135. D. Bimberg, M. Sondergeld, and E. Grobe, "Thermal Dissociation of Excitons Bounds to Neutral Acceptors in High-Purity GaAs," Physical Review B 4, 3451-3455 (1971).
    136. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Applied Physics Letters 91, - (2007).
    137. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
    138. H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, "Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile," Applied Physics Letters 95, 061104 (2009).
    139. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, "Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop," Applied Physics Letters 93, 041102 (2008).
    140. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Applied Physics Letters 96, 221105 (2010).
    141. D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
    142. W. L. Barnes, "Fluorescence near interfaces: The role of photonic mode density," Journal of Modern Optics 45, 661-699 (1998).
    143. P. A. H. S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Advanced Materials 14, 1393-1396 (2002).
    144. W.-H. Chu, Y.-J. Chuang, C.-P. Liu, P.-I. Lee, and S. L.-C. Hsu, "Enhanced spontaneous light emission by multiple surface plasmon coupling," Optics Express 18, 9677-9683 (2010).
    145. N. C. Das, "Tunable infrared plasmonic absorption by metallic nanoparticles," Journal of Applied Physics 110, 046101 (2011).
    146. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns," Applied Physics Letters 87, 203508 (2005).
    147. J.-Y. Kim, M.-K. Kwon, K.-S. Lee, S.-J. Park, S. H. Kim, and K.-D. Lee, "Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal," Applied Physics Letters 91, 181109 (2007).
    148. T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, "Optical properties of hexagonal GaN," Journal of Applied Physics 82, 3528-3535 (1997).
    149. D. W. Lynch, and W. R. Hunter, Handbook of optical constants of solids (Academic Press, Orlando, 1985).
    150. E.-J. Hong, K.-J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi, and H.-S. Kim, "Effect of nano-patterning of p-GaN cladding layer on photon extraction efficiency," Solid-State Electronics 53, 1099-1102 (2009).
    151. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Physical Review B 58, 6779-6782 (1998).
    152. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, "The plasmonic properties of elliptical metallic hole arrays," Applied Physics Letters 94, 033101 (2009).
    153. S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, "Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED," Opt. Express 21, 12100-12110 (2013).
    154. M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, "Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet," Physical Chemistry Chemical Physics 13, 7459-7466 (2011).
    155. X. Xu, M. Funato, Y. Kawakami, K. Okamoto, and K. Tamada, "Grain size dependence of surface plasmon enhanced photoluminescence," Opt. Express 21, 3145-3151 (2013).
    156. C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, "Enhancement of Green Emission from InGaN/GaN Multiple Quantum Wells via Coupling to Surface Plasmons in a Two-Dimensional Silver Array," Advanced Functional Materials 21, 4719-4723 (2011).
    157. Z. Li, J. Bian, H. He, Z. Ren, X. Zhang, X. Li, and G. Han, "Surface plasmon enhanced blue–green photoluminescence from carbon-rich amorphous silicon carbide films," Journal of Alloys and Compounds 513, 18-22 (2012).
    158. C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, "Time-resolved photoluminescence of In_{x}Ga_{1-x}N/GaN multiple quantum well structures: Effect of Si doping in the barriers," Physical Review B 64, 245339 (2001).
    159. C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, "Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles," Applied Physics Letters 96, 071107 (2010).
    160. E. M. Purcell, "Proceedings of the American Physical Society - Spontaneous emission probabilities at radio frequencies," Physical Review 69, 681 (1946).
    161. S.-H. Park, and S.-L. Chuang, "Spontaneous polarization effects in wurtzite GaN/AlGaN quantum wells and comparison with experiment," Applied Physics Letters 76, 1981-1983 (2000).
    162. S.-H. Park, and S.-L. Chuang, "Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects," Journal of Applied Physics 87, 353-364 (2000).
    163. S.-H. Park, and S.-L. Chuang, "Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors," Physical Review B 59, 4725-4737 (1999).
    164. I. H. Brown, P. Blood, P. M. Smowton, J. D. Thomson, S. M. Olaizola, A. M. Fox, P. J. Parbrook, and W. W. Chow, "Time Evolution of the Screening of Piezoelectric Fields in InGaN Quantum Wells," Quantum Electronics, IEEE Journal of 42, 1202-1208 (2006).
    165. I. Vurgaftman, and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," Journal of Applied Physics 94, 3675-3696 (2003).
    166. U. T. Schwarz, H. Braun, K. Kojima, Y. Kawakami, S. Nagahama, and T. Mukai, "Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells," Applied Physics Letters 91, 123503 (2007).
    167. J.-H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, K. Hyunsoo, S. Choi, H.-J. Kim, and R. D. Dupuis, "Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells," Selected Topics in Quantum Electronics, IEEE Journal of 15, 1080-1091 (2009).
    168. H. Zhong, A. Tyagi, N. N. Fellows, F. Wu, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, "High power and high efficiency blue light emitting diode on freestanding semipolar (101¯1¯) bulk GaN substrate," Applied Physics Letters 90, 233504 (2007).
    169. Y.-D. Lin, A. Chakraborty, S. Brinkley, H. C. Kuo, T. Melo, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Characterization of blue-green m-plane InGaN light emitting diodes," Applied Physics Letters 94, - (2009).
    170. C.-F. Huang, T.-C. Liu, Y.-C. Lu, W.-Y. Shiao, Y.-S. Chen, J.-K. Wang, C.-F. Lu, and C. C. Yang, "Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth," Journal of Applied Physics 104, 123106 (2008).
    171. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, "Strain-related phenomena in GaN thin films," Physical Review B 54, 17745-17753 (1996).
    172. K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, and H. Lüth, "Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires," Journal of Applied Physics 105, - (2009).
    173. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, "Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy," Physical Review B 62, 16826-16834 (2000).
    174. L.-H. Peng, C.-W. Chuang, and L.-H. Lou, "Piezoelectric effects in the optical properties of strained InGaN quantum wells," Applied Physics Letters 74, 795-797 (1999).
    175. E. Kuokstis, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. S. Shur, "Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells," Applied Physics Letters 80, 977-979 (2002).
    176. T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, "Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells," Applied Physics Letters 73, 3571-3573 (1998).
    177. T. Kuroda, and A. Tackeuchi, "Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells," Journal of Applied Physics 92, 3071-3074 (2002).
    178. Y. D. Qi, H. Liang, D. Wang, Z. D. Lu, W. Tang, and K. M. Lau, "Comparison of blue and green InGaN∕GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy," Applied Physics Letters 86, 101903 (2005).

    下載圖示 校內:2019-05-27公開
    校外:2019-05-27公開
    QR CODE