| 研究生: |
郭展宏 Kuo, Chan-Hung |
|---|---|
| 論文名稱: |
以概念為基之資訊檢索機制研發 Development of a Concept-based Information Retrieval Mechanism |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 資訊檢索系統 、概念地圖 、資訊需求 、領域不熟習者 |
| 外文關鍵詞: | Information retrieval, Concept map, Information needs, Layman |
| 相關次數: | 點閱:101 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資訊內容急遽的增加,在大量的資訊內容中找尋資料並滿足資訊需求是項艱難的任務。現今之資訊檢索系統可協助使用者獲取符合其資訊需求的內容,但當使用者對領域不熟悉以致無法提供合適查詢主題(Search Items)時,資訊檢索的時效與正確率將大幅降低。
針對上述問題,本研究提出以概念為基之資訊檢索機制(Concept-based Information Retrieval Mechanism,CBIR),透過與使用者之互動,解析使用者資訊需求並轉換為概念地圖(Concept Map),再藉由概念地圖搜尋與擷取符合使用者需求之資訊。實驗結果顯示,針對領域不熟習者(Layman)本機制優於傳統之Vector Space Model (VSM)檢索模式,可有效輔助使用者進行概念組織,找出合適的查詢主題,以提升檢索的正確率與時效。
As the amount of electronic data is increasing, it is getting harder to search information effectively. Contemporary information retrieval systems do help users to obtain required information, however, the effectiveness and precision of information retrieval may remarkably decrease especially when the users are layman of a targeted domain.
This thesis proposed a Concept-based Information Retrieval Mechanism (CBIR) to help users retrieve information fulfilling their information needs through interactive information requirement analysis. The information requirement analysis process helps users organize concepts, which are gradually transferred into a concept map used for information retrieval. Experimental results showed that proposed Concept-based Information Retrieval Mechanism is more effective than traditional information retrieval mechanism (Vector Space Model). The research result may be used for user concept organization to efficiently obtain required information as well as enhance information retrieval precision.
[1] Abiteboul, S. Querying semi-structured data. in Proceedings of sixth international conference of database theory. 1997.
[2] Allan, J. & Croft., B. Challenges in Information Retrieval and Language Modeling. ACM SIGIR Forum, 2003. 37(1).
[3] Ausubel, D. Educational psychology: a cognitive view. 1968, New York:: Holt, Rinehart, and Winston.
[4] Bichindaritz, I. & Akkineni, S. Concept mining for indexing medical literature. Engineering Applications of Artificial Intelligence, 2006. 19: p. 411-417.
[5] Chen, B. Exploring the use of latent topical information for statistical Chinese spoken document retrieval. Pattern Recognition Letters, 2006. 27: p. 9-18.
[6] Chen, S.W., Lin, S.C. & Chang, K.E. Attributed Concept Maps:Fuzzy Integration and Fuzzy Matching. IEEE Transactions on Systems, Man, and Cybernetics, 2001. 31(5): p. 842-852.
[7] Collins, A.M. & Loftus, E.F. A spreading activation theory of semantic processing. Psychological Review, 1975. 82: p. 407-425.
[8] Crestani, F. Applications of spreading activation techniques in Information Retrieval. Artificial Intelligence Review, 1997a. 11(6): p. 453-482.
[9] Crestani, F. Retrieving documents by constrained spreading activation on automatically constructed hypertexts. in In Proceedings of EU-FIT 97-Fifth International Congress on Intelligent Techniques and Soft Computing,. 1997b. Aachen,Germany.
[10] Crestani, F. & Lee, P.L. Searching the web by constrained spreading activation. Information Processing and Management, 2000. 36: p. 585-605.
[11] Crestani, F. & van Rijsbergen, C. Modeling Adaptive Information Retrieval. 1993, University of Glasgow: Glasgow.
[12] Dale, R., Somers, H.L. & Moisl, H. Handbook of Natural Language Processing 2000: Marcel Dekker, Inc.
[13] Girju, R. & Moldovan, D. Mining Answers for Causation Questions. in Proceedings of the American Association for Artificial Intelligence (AAAI). 2002. California, USA: Spring Symposium, Stanford University.
[14] Hassan, O.A.B. Application of value-focused thinking on the environmental selection of wall structures. Journal of Environmental Management, 2004. 70: p. 181-187.
[15] Hsu, L. & Hsieh, S.-I. Concept Mapsnext term as an Assessment Tool in a Nursing Course Journal of Professional Nursing, 2005. 21(3): p. 141-149.
[16] Justeson, J.S. & Katz, S.M. Technical terminology : some linguistic properties and an algorithm for identification in text. 1995, Almadem: IBM Research Division.
[17] Kapetanios, E., Sugumaran, V. & Tanase, D. A parametric linguistics based approach for cross-lingual web querying. Data & Knowledge Engineering, 2008. 66: p. 35-52.
[18] Kelly, D. & Fu, X. Eliciting better information need descriptions from users of information search systems. Information Processing and Management, 2007. 43: p. 30-46.
[19] Kimelfeld, B. & Sagiv, Y. Efficiently enumerating results of keyword search over data graphs. Information System, 2008. 33: p. 335-359.
[20] Kinchin, I.M. If concept mapping is so helpful to learning biology, why aren't we all doing it ? International Journal of Science Education, 2001. 23(12): p. 1257-1269.
[21] Lee, M.C., Tsai, K.H. & Wang, T.I. A practical ontology query expansion algorithm for semantic-aware learning objects retrieval. . Computers and Education, 2008. 50: p. 1240-1257.
[22] Li, Y. & Zhong, N. Web mining model and its applications for information gathering. Knowledge-based systems, 2004. 17: p. 207-217.
[23] Lin, S.C., Chang, K.E., Sung, Y.T. & Chen, G.D. A new structural knowledge assessment based on weighted concept maps. in Proceeding of the International Conference on Computers in Education. 2002.
[24] Mao, W. & Chu, W.W. The phrase-based vector space model for automatic retrieval of free-text medical documents. Data & Knowledge Engineering, 2007. 61(1): p. 76-92.
[25] Murdock, V., Kelly, D., Croft, W.B., Belkin, N.J. & Yuan, X. Identifying and improving retrieval for procedural questions. Information Processing and Management, 2007. 43: p. 181-203.
[26] Novak, J.D. & Gowin, D.B. Learning how to learn. 1984, London: Cambridge University Press.
[27] Novak, J.D. & Musonda, D. A twelve-year longitudinal study of science Concept learning. American Education Research Journal, 1991. 28(1): p. 117-153.
[28] Plotnick, E. Concept mapping: a graphical system for understanding the relationship between concepts: an ERIC digest. 1997, New York:: ERIC Clearinghouse on Information and Technology.
[29] Ricardo, B.-Y. & Ribeiro-Neto, B. Modern Information Retrieval. 1999: Addison-Wesley Longman.
[30] Rumelhart, D. & Norman, D. Representation in memory. Technical report. 1983, UCSD La Jolla: USA.
[31] Salton, G. & Christopher, B. Term-Weighting Approaches in Automatic Text Retrieval. Information Processing and Management, 1988. 24(5): p. 513-523.
[32] Song, M., Song, I.Y., Hu, X. & R.B., A. Integration of association rules and ontologies for semantic query expansion. Data & Knowledge Engineering, 2007. 63: p. 67-75.
[33] Stojanovic, N., Studer, R. & Stojanovic, L. An Approach for Step-By-Step Query Refinement in the Ontology-based Information Retrieval. in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. 2004.
[34] Tai, X., Ren, F. & Kita, K. An information retrieval model based on vector space method by supervised learning. Information Processing and Management, 2002. 38: p. 749-764.
[35] Tseng, S.S., Sue, P.C., Su, J.M., Weng, J.F. & Tsai, W.N. A new approach for constructing the concept map. Computers & Education, 2007. 49: p. 691-707.
[36] Wang, W.M., Cheung, C.F., Lee, W.B. & Kwok, S.K. Mining knowledge from natural language texts using fuzzy associated concept mapping. Information Processing and Management, 2008. 44: p. 1707-1719.
[37] Wang, W.M., Cheung, C.F., Lee, W.B. & Kwok, S.K. Self-associated concept mapping for representation, elicitation and inference of knowledge. Knowledge-based systems, 2008. 21: p. 51-61.
[38] Yeh, J.Y., R., K.H., Yang, W.P. & Meng, I.H. Text summarization using a trainable summarizer and latent semantic analysis. Information Processing and Management, 2005. 41: p. 75-95.
[39] 傅雅秀 資訊尋求的理論與實証研究. 圖書與資訊學刊, 1997a. 20: p. 13-28.