| 研究生: |
張嘉元 Zhang, Jia-Yuan |
|---|---|
| 論文名稱: |
電子束熔煉法加熱具自由表面高純度鈷之熔池數值分析 Numerical Analysis on Molten Pool of High Purity Cobalt with Free Surface by Electron Beam Melting |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 數值模擬 、電子束熔煉 、相變化 、鈷 、自由表面 、蒸發 |
| 外文關鍵詞: | numerical simulation, electron beam melting, phase change, cobalt, free surface, evaporation |
| 相關次數: | 點閱:99 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文透過套裝軟體Ansys Fluent建立一個三維暫態Volume of Fluid(VOF)之模型,模擬固定電子束能量直接加熱純鈷金屬之熔煉,金屬材料邊界以水冷銅坩鍋進行散熱,模擬具自由表面純鈷金屬之熔煉過程,考慮受熱後金屬膨脹之問題,討論各項熔池相關參數,如:不同電子束能量、不同電子束半徑與熱散失分析之影響。以模擬結果所示,透過表面浮動現象、熔煉過程之溫度變化、熔池表面平均溫度以及熔池擴散速度等等現象,發現電子束熔煉加熱純鈷金屬會在約30秒後近乎穩態。
固定電子束能量,使用不同的電子束半徑進行熔煉,以較大的電子束半徑能夠使得熔池表面溫度較低,也能有效的降低蒸發熱散失,避免熔池溫度梯度過大之問題,故以電子束半徑較大者進行熔煉過程。固定電子束半徑,使用不同之電子束能量進行熔煉,越大的電子束能量會使水冷銅坩鍋之冷卻效果降低,而增加熱平衡之能量占比,達到過濾金屬雜質之效果,故在適當電子束半徑下,應以較大之電子束能量作為電子束熔煉之使用參數。
電子束能量的增加,會使蒸發熱在平坦表面假設下,較自由表面之模擬結果較大,有多估之情況發生,而溫度場方面,在兩種模擬之結果也是自由表面考慮體積變化之模擬較為低。本研究改善了不考慮體積變化之問題,更能準確預測實際熔煉過程中熔池之行為。
In view of the evolution of semiconductor or the mobile phone technology with time, they use high-strength, high-purity and high stability of the materials by vacuum metallurgy. Therefore, in vacuum metallurgy process, a kind of process parameters have important effect to obtain the high-purity materials. In this study, a numerical simulation model is used to investigate the heat transfer characteristics of molten pool with free surface by electron beam melting (EBM). It is used to consider the increase of volume change with the temperature raise and the surface fluctuation. It also considers many effects, including buoyancy, Marangoni forces, evaporation and radiation losses. As the beam power increases, the evaporation and radiation losses of the cobalt by EBM increase. On the other hand, as the beam radius increases, it can effectively reduce the maximum temperature of the molten pool and increase the surface area of molten pool. The larger beam power can reduce the energy proportion of water cooling effect and increase the energy proportion of heat balance and the surface area of molten pool. For reasons outlined above, it is recommended to adopt the larger beam power and radius during EMB process. To compare the assumption of free surface and plat surface, the temperature trend of the result with free surface is lower than it with plat surface. Due to the assumption of free surface, we can more precisely predict the behaviors of molten pool in the actual EBM process.
1.楊邦朝, 崔紅玲, “濺射靶材的製備與應用,” 真空, 第3期, 2001
2.戴永年, “真空冶金發展動態,” 真空, 第1期, 2009
3.伍秀菁, 汪若文, 林美吟, “真空技術與應用,” 行政院國家科學委員會精密儀器發展中心, 2001.
4.D. C. Jiang, Y. Tan, S. Shi, Q. Xu, W. Dong, Z. Gu and R. X. Zou, “Research on new method of electron beam candle melting used for removal of P from molten Si,” Materials Research Innovations, Vol. 15(6), pp. 406-409, 2011.
5.J. P. Bellot, D. Ablitzer and E. Hess, “ Aluminum volatilization and inclusion removal in the elecrtron beam cold hearth melting of Ti alloys,” Metallurgical and Materials Transactions B, Vol. 31(4), pp. 845-854, 2000.
6.J. Goldak, A. Chakravarti and M. Bibby, “A new finite element model for welding heat sources,” Metallurgical Transaction B,Vol.15(2), pp.299-305, 1984.
7.P. Michaleris, “Modeling metal deposition in heat transfer analyses of additive manufacturing processes,” Finite Elements in Analysis and Design, Vol.86, pp.51-60, 2014.
8.J. C. Heigel, P. Michaleris and E. W. Resltzel, “Thermo-mechanical-model-development-and-validation-of-directed-energydeposition-additive-manufacturing-of-Ti6Al4V,” Additive Manufacturing, Vol.5, pp.9-19, 2015.
9.C. C. Liu and J. S. He, “Numerical analysis of thermal fluid transport behavior during electron beam welding of 2219 aluminum alloy plate,” Transactions of Nonferrous Metal Society of China, Vol.27(6), pp.1319-1326, 2017.
10.L. Han, F. W. Liou and S. Musti, “Thermal behavior and geometry model of melt pool in laser material process,” Journal of Heat Transfer, Vol. 127(9), 2005.
11.C. J. Li, T. W. Tsai and C. C. Tseng, “Numerical simulation for heat and mass transfer during selective laser melting of titanium alloys powder,” Physics Procedia, Vol.83, pp.1444-1449, 2016.
12.J. Xiong, Y. Lei and R. Li, “Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures,” Applied Thermal Engineering, Vol. 126, pp. 43-52, 2017.
13.H. Zhao, G. Zhang, Z. Yin and L. Wu, “A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping,” Journal of Materials Processing Technology, Vol. 211(3), pp. 488-495, 2011.
14.B. Basu, J. A. Sekhar, R. J. Schaefer and R. Mehrabian,” ANALYSIS OF THE STEADY STATE MOLTEN POOL OBTAINED BY HEATING A SUBSTRATE
WITH AN ELECTRON BEAM,” Acta metall, mater. Vol. 39, No. 5, pp. 725-733, 1991
15.Y. Tan, S. Wen, S. Shi, D. Jiang, W. Dong and X. Guo “Numerical simulation for parameter optimization of silicon purification by electron beam melting,” Vacuum, Vol. 95, pp. 18-24, 2013.
16.A. Powell, U. Pal, M. J. V. D. Avyle, B. Damkroger and J. Szekely, "Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys," Metallurgical and Materials Transactions B, Vol. 28B, pp. 1227-1239, 1997.
17.Y. Tan, X. Guo, S. Shi, W. Dong, D. Jiang, “Study on the removal process of phosphorus from silicon by electron beam melting,” Vacuum, Vol93, pp. 65-70, 2013.
18.K. Vutova, V. Vassileva, E. Koleva, E. Georgieva, G. Mladenov, D. Mollov and M. Kardjiev, “Investigation of electron beam melting and refining of titanium and tantalum scrap,” Journal of Materials Processing Technology
19.C. C. Chao, “Numerical Analysis on Molten Pool of High Purity Metals By Electron Beam Melting,” Master’s Thesis, Department of Mechanical Engineer, National Cheng Kung University, 2014.
20.C. Y. Chen, “Thermal Analysis of Numerical Simulation and Experimental Investigation for High Purity Cobalt Melted by Electron Beam,” Master’s Thesis, Department of Mechanical Engineer, National Cheng Kung University, 2016.
21.L. H. Huang, “Three-Dimensional Numerical Simulation of Molten Pool of High Purity Cobalt Heated by Spiral Scanning Type of Electron Beam Melting,” Master’s Thesis, Department of Mechanical Engineer, National Cheng Kung University, 2017.
22.劉喜海, 徐成海, 鄭險峰, “真空熔煉,” 化學工業出版社, pp. 196-233, 2013.
23.D. W. Tripp, “Modelling power transfer in electron beam heating of cylinders,” PhD Thesis, The University of British Columbia, Vancouver, 1994.
24.Z. Zhang, “Modeling of Al evaporation and Marangoni Flow in electron beam button melting of Ti-6Al-4V,” Master’s Thesis, The Universtiy of British Columbia, Vancouver, 2013.
25.Y. P. Lei, H. Murakawa, Y. W. Shi and X. Y. Li, “Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Computational Materials Science, Vol. 21(3), pp. 276-290, 2001.
26.朱先承, “矩形潛熱式熱控裝至之熔解熱傳研究,” 博士論文, 國立成功大學機械系, 1994.
27.ANSYS, “Ansys Fluent. 14.0 Theory Guide,” ANSYS inc, 2011.
28.V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Internation Journal of Heat and Mass Transfer, Vol. 30, pp. 1709-1719, 1987.
29.B. V. L’vov, “Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology,” Springer, Vol. 7, pp. 35-38, 2007.
30.P. D. Lee, P. N. Quested and M. McLean, "Modelling of Marangoni effects in electron beam melting," Philosophical Transactions of the Royal Society A, Vol. 356, pp. 1027-1044, 1998.
31.V. Fallah, M. Alimardani, S. F. Corbin and A. Khajepour, “Temporal development of melt-pool morphology and clad geometry in laser powder deposition,” Computational Material Science, Vol. 50(7), pp.2124-2134, 2011.
32.K. W. Westerberg, M. A. McClelland and B. A. Finlayson, “Finite Element Analysis of Flow, Heat Transfer, and Free Interfaces in an electron Beam Vaporization System for Metals,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 663-671, 1991.
33.D. Dai and D. Gu, “Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments,” Materials & Design, Vol. 55, pp. 482-491, 2014
34.D. Dai and D. Gu, “Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder,” International Journal of Machine Tools and Manufacture, Vol. 88, pp. 95-107, 2015.
35.K. C. Mills, “Recommended values of thermophysical properties for selected commercial alloys,” Woodhead Publishing, 2002.
36.M. W. Chase, “NIST-JANAF thermochemical tables,” 1998
37.L. C. Yaws, “Handbook of properties of the chemical elements,” Norwich, N.Y. : Knovel, c2011., 2011.
38.R. W. Powell and P. E. Liley., "Thermal Conductivity of the Elements: A Comprehensive Review," Journal of Physical and Chemical Reference Data, Vol. 3, pp. I–1 to I–796, 1974.
39.P. F. Paradis, T. Ishikawa and S. Yoda, “Surface tension and viscosity of liquid and undercooled tantalum measured by a containerless method,” Journal of applied physics, Vol. 97(5), 2005.
40.R. Rai, J. W. Elmer, T. A. Palmer and T. DebRoy, “Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium,” Journal of physics D: Applied physics, Vol. 40, 2007.
41.R. E. Cohen, D. R. Lide and G. L. Trigg, “AlP Physics Desk Reference, 3rd edition,” New York Springer-Verlag New York, Inc., 2003.
42.J. W. Edwards, H. L. Johnston and P. E. Blackburn, “Vapor Pressure of Inorganic Substances. IV. Tantalum between 2624 and 2943° K. 1,” Journal of the American Chemical Society, Vol. 73, pp. 172-174, 1951.
43.J. W. Edwards, H. L. Johnston and W. E. Ditmars, “The Vapor Pressures of Inorganic Substances. VII. Iron Between 1356° K. and 1519° K. and Cobalt Between 1363° K. and 1522° K1,” Journal of the American Chemical Society, Vol. 73, pp. 4729-4732, 1951.
44.M. J. Assael, I. J. Armyra, J. Brillo, S. V. Stankus, J. Wu and W. A. Wakeham, “Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc.” Journal of Physical and Chemical Reference Data, Vol. 41, 2012.
45.K. Vutova and V. Donchey, “Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization,” Materials(Basel), Vol. 6(10), pp.4626-4640, 2013.