簡易檢索 / 詳目顯示

研究生: 曾靖程
Tseng, Jing-Chen
論文名稱: 應力對可撓式鋯鈦酸鉛薄膜的鐵電電域動態行為影響研究
Study of Stress Effect on Ferroelectric Domain Dynamics in Flexible PZT Films
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 鐵電材料鋯鈦酸鉛基板應力電子親和力
外文關鍵詞: Pb(Zr1-xTix)O3, Ferroelectricity, Mica, Electron Affinity
相關次數: 點閱:90下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋯鈦酸鉛 (Pb(Zr1-xTix)O3,PZT) 其晶體結構根據鋯跟鈦的比例不同有著不同的晶相,分別為菱長晶以及長方晶鈣鈦礦結構,然而在鋯鈦比例為52/48時,正好處於此兩種晶相接面的變形相邊界(morphotropic phase boundary,MPB),在此相上有著較大的壓電係數(piezoelectric coefficient)與介電常數(dielectric constant)。在本研究中,透過將PZT薄膜成長於不同晶軸方向的鈦酸鍶(SrTiO3) (111)與STO(100)基板上,觀察極化方向對其壓電係數影響。
    接著將PZT薄膜成長在不同基板上像是雲母(mica)以及鈦酸鍶(SrTiO3) ,觀察基板的應力影響。而由於雲母的優點還有它的可撓性(flexible),可以簡單地使用一彎曲載台對薄膜產生不同方向應力,藉此觀察撓電效應(flexoelectricity)影響,並且在應力下透過觀察動態電域成長(domain growth)行為,考慮在不同基板不同應力下對其活化場(activation field)的影響。最後我們發現在掃描過程增加探針力道去摩擦薄膜表面,經由摩擦生電能夠在不外加電場下將電域翻轉(switch),且不同電子親和力的探針摩擦過後產生的電荷也有所不同。因此選用不同電子親和力的探針能夠使薄膜表面產生不同的電荷,可以將電域翻轉至上或下,且過程不須施加外加電場。

    Pb(Zr0.52Ti0.48)O3 (PZT), which was at the morphotropic phase boundary between tetragonal and rhombohedral perovskites, had a high piezoelectric coefficient and dielectric constant. PZT films grown on SrTiO3 (STO) and mica substrates had the same value in their piezoelectric coefficient (d33), so the substrate stress had no influence in d33 value. However, activation field of PZT films changed by different substrate through observing domain growth behavior. Moreover, we also demonstrated the domain switching by pressing the sample by an AFM tip with different electron affinities. We observed static charges appeared on the PZT surface due to the friction between the tip and the film. These charges induced from the friction could switch ferroelectric domain to up or down without the electric field.

    摘要 Ⅰ Abstract Ⅱ 誌謝 VI 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 2.1 鐵電材料簡介 3 2.2 鈣鈦礦結構 6 2.3 鋯鈦酸鉛 8 2.3.1 變形相邊界(morphotropic phase boundary, MPB) 9 2.4 電域成長行為研究 11 2.5 撓電效應(Flexoelectricity) 17 第三章 實驗原理與方法 21 3.1 掃描式探針顯微術 21 3.1.1 原子力顯微鏡 24 3.1.2 壓電力顯微鏡 25 3.1.3 表面電位顯微鏡 28 3.2 壓電係數(piezoelectric coefficient, d33)量測方法 30 第四章 結果與討論 33 4.1 鋯鈦酸鉛不同晶相之壓電特性研究 33 4.1.1雲母與鈦酸鍶基板對薄膜壓電係數影響 33 4.1.2應力作用下壓電係數變化 39 4.2 鋯鈦酸鉛鐵電電域成長行為 41 4.2.1 基板應力及晶軸方向對鐵電電域成長行為影響 41 4.2.2應力作用下其鐵電電域成長行為 50 4.3 摩擦生電 54 第五章 結論 62 參考文獻 63

    1. Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
    2. Kenji Uchino, “Ferroelectric Devices”, Marcel Dekker, Inc., New York, (2000)
    3. Berdard Jaffe, William R. Cook and Hans Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London, (1970).
    4. William D. Callister, Jr., “Material Science And Engineering”, John Wiley & Sons Inc., (London).
    5. 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
    6. Patrycja Paruch, Thierry Giamarchi, Thomas Tybell and Jean-Marc Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films”, American Physical Society, APS March Meeting, March, pp.21-25, (2005).
    7. Yuhuan. Xu, “Ferroelectric Material and Their Application”, Elsevier, Amsterdam, (1990).
    8. Ian M. Reaney, Enrico L. Colla and Nava Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor”, Jpn. J. Appl., Vol. 33, pp. 3984-3990, (1994).
    9. A. J. Moulson and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman & Hall, New York, (1990).
    10. Seung-Hyun KIM, Jeong-Suong YANG, Chang Young KOO, Jung-Hoon YEOM, “Dielectric and Electromechanical Properties of Pb(Zr,Ti)O3 Thin Films for Piezo-Microelectromechanical System Devices”, Jpn. J. Appl. Phys. Vol. 42 pp. 5952–5955, (2003).
    11. T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, “Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8O3 Thin Films”, Phys. Rev. Lett. 89,9, (2002).
    12. B. J. Rodriguez, R. J. Nemanich, A. Kingon, and A. Gruvermana, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy”, Appl. Phys. Lett. 86, 012906, (2005).
    13. Y. C. Chen, Q. R. Lin, and Y. H. Chu, “Domain growth dynamics in single-domain-like BiFeO3 thin films”, Appl. Phys. Lett. 94, 122908, (2009).
    14. R. Maranganti, N. D. Sharma, and P. Sharma, “Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions”, PHYSICAL REVIEW B 74, 014110, (2006).
    15. Kogan, S. M., “Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals,” Sov. Phys. Solid State 5, 2069–2070, (1964).
    16. A. Gruverman, “Mechanical Writing of Ferroelectric Polarization”, SCIENCE VOL 336 6 APRIL, (2012).
    17. 陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, (2003).
    18. Sergei N. Magonov, and Myung-Hwan Whangbo, New York VCH, (1996).
    19. Morris, V. J., Kirby, A. R., Gunning, A. P., “Atomic Force Microscopy for Biologists”, Imperial College Press: London, (1999).
    20. R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, “Surface and domain structures of ferroelectric crystals studied with scanning force microscopy”, J. Appl. Phys., 74, 12, (1993).
    21. 王洸富, “屏蔽電荷對180度域壁成核動態機制之影響”, 成功大學, 碩士論文, (2010).
    22. 曾賢德、果尚志, “奈米電性之掃描探針量測技術”, 物理雙月刊(廿五卷五期), (2003).
    23. Seungbum Hong, Jungwon Woo, Hyunjung Shin, Jong Up Jeon, Y. Eugene Pak, “Principle of ferroelectric domain imaging using atomic force microscope”, J. Appl. Phys. 89, 1377, (2001).
    24. Fang-Zhou Yao, “Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics”, RSC Adv., 4, 20062–20068, (2014).
    25. Yoshitaka Ehara, “Crystal orientation dependency of ferroelectric property in rhombohedral Pb(Zr,Ti)O3 films”, Japanese Journal of Applied Physics 53, 04ED06, (2014).
    26. Electron affinity, From Wikipedia, the free encyclopedia.

    下載圖示 校內:2018-09-01公開
    校外:2019-09-01公開
    QR CODE