簡易檢索 / 詳目顯示

研究生: 陳美涵
Chen, Mei-Han
論文名稱: 鋰鈦氧化物之粉末合成及薄膜沉積在鋰離子電池負極材料應用之研究
Powder Synthesis and Thin Film Deposition of Lithium Titanate for Li-ion Battery Anode Application
指導教授: 方冠榮
Fung, Kuan-Zong
共同指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 120
中文關鍵詞: 負極鋰鈦氧化物薄膜鋰離子電池
外文關鍵詞: Anode, Lithium Titanate, Thin film, Li-ion battery
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Li4Ti5O12為尖晶石(spinel)結構的氧化物,且為零應變材料而具有良好的循環性能。因結構穩定性及足夠安全性,Li4Ti5O12深具應用發展潛力之新型鋰離子電池用負極材料。然而,導電性不佳導致在大電流充放電性能差。依缺陷化學觀點,藉電荷補償效應,摻雜異價元素可提升Li4Ti5O12之導電性。同時透過低氧分壓氣氛形成氧離子空缺,增加其帶負電的電子濃度。因此本研究以固相反應法合成高價數過鍍金屬Nb摻雜Li4Ti5O12改善此材料之導電特性,同時以還原氣氛(10% H2/Ar)合成材料得到更佳的導電效應。
    另一方面,本研究將電極材料透過射頻磁控濺鍍法成長Li4Ti5O12薄膜。同時,透過濺鍍參數的改變探討薄膜其成長速率及組成之影響,並將最佳參數製備探討合成氣氛對Li4Ti5O12薄膜電化學行為的影響。
    由XRD結果顯示由於還原氣氛下氧空缺之形成,促使Nb摻雜Li4Ti5O12的溶解度提升。由導電性的量測顯示還原氣氛下合成Li4Ti5O12導電性可提高約一百倍,空氣下合成之Li4Ti5O12導電性為1.72 × 10-7 Scm-1,還原氣氛下合成之Li4Ti5O12導電性為1.17 ×10-5 Scm-1。然而Nb摻雜Li4Ti5O12結果顯示在空氣下合成之Li4Ti4.95Nb0.05O12導電性無明顯提升。對於不同氣氛下高價數Nb5+取代Ti4+之結果,顯示空氣下主要以鈦空缺的形成來作補償效應,而還原氣氛下則是透過電子產生。
    空氣下合成Li4Ti4.95Nb0.05O12,由於Nb5+取代Ti4+,由於離子半徑的不同,晶格常數增加,可讓鋰離子能有效的在材料內部擴散。而還原氣氛下合成Li4Ti5O12促使電子透過混合Ti3+/Ti4+價態的產生,電子導電性提升。
    由放電速率測試結果顯示,當放電速率達到10C,空氣下合成之無摻雜Li4Ti5O12電容量已衰退到約130 mAhg-1,而Li4Ti4.95Nb0.05O12電容量為約145 mAhg-1;還原氣氛下合成之無摻雜Li4Ti5O12電容量為約150 mAhg-1且Li4Ti4.95Nb0.05O12的電容量可達到156 mAhg-1。透過交流阻抗法分析結果顯示鋰離子擴散係數隨晶格常數增加而增加。本研究結果證實以還原氣氛使Li4Ti5O12 的導電性提升以及鋰離子擴散行為的改善較摻雜Nb的效果佳。
    為了探討Li4Ti5O12電極充放電過程中鋰離子嵌入嵌出過程中電子傳遞與鋰離子擴散行為,本研究以Li4Ti5O12 與鋰金屬間之界面反應進行導電率動態變化量測。同時由Li4Ti5O12對典型的La0.56Li0.33TiO3固態電解質材料個別做比較下,結果顯示Li4Ti5O12與鋰金屬間界面反應之導電性提升速率較La0.56Li0.33TiO3慢。此現象可歸因於鋰離子嵌入位置之空間不同,La0.56Li0.33TiO3為鈣鈦礦(perovskite)結構,鋰離子填入A位置空缺中之空間較尖晶石Li4Ti5O12之八面體位置大,導致鋰離子能有效的在材料內部擴散。因此證實為了改善電極材料的導電性質,除了提升其電子導電率,鋰離子擴散速率的提升更能改善材料電化學特性。
    另一方面,本研究將電極材料透過射頻磁控濺鍍法成長Li4Ti5O12薄膜。探討濺鍍參數對薄膜其成長速率及組成之影響,結果顯示隨著氧氣分率降低以及射頻功率提升,薄膜成長速率增加。然而氧氣分率過低,雖可提升薄膜成長速率卻會使得因濺鍍過程中缺氧而導致鈦原子游離而濺鍍於基板;過高的射頻功率雖可提升薄膜成長速率卻由於再濺鍍效應導致結晶性降低。由鋰含量、氧氣分率及射頻功率的改變可得到最佳的鍍膜參數。
    為了探討在相同薄膜粒徑下合成氣氛對Li4Ti5O12薄膜電化學行為的影響,進行充放電量測。首次充放電超過其理論電容量(175mAhg-1),推測額外的電容量為非晶相(amorphous)的TiO2所貢獻。合成氣氛熱處理對薄膜電容量的影響之原因與Li4Ti5O12粉末影響相同。當充放電速率增加到1C時,當充放電循環達50圈後,空氣下熱處理之Li4Ti5O12薄膜電容量約163.9 mAhg-1,而還原氣氛熱處理之Li4Ti5O12薄膜電容量約
    190.0 mAhg-1。

    Since titanium ions show multi-valent states, the conductivity of lithium titanate may highly depend upon the addition of aliovalent dopant or surrounding atmosphere. To improve the electrical conductivity, introduce the Ti3+ through being calcined in reducing atmosphere. To improve the behavior of lithium ion diffusion, lattice expansed through the ionic radius of Nb5+ or Ti3+. The electrical conductivity of Li4Ti5O12 under reducing synthesis was improved by two orders of magnitude.The capacity and rate capability would be improved when exposed at low oxygen partial pressure.
    Li4Ti5O12 thin films were deposited on a Pt/ Ti/SiO2/Si(100) substrate via radio frequency (rf) sputter in a mixture of oxygen and argon gases. The crystallinity of Li4Ti5O12 phase increased with the annealing temperature increasing from 500°C to 700°C. The variation was attributed to some Li escaped from thin films. The capacity of Li4Ti5O12 thin film was higher than the theoretical capacity (175 mAhg-1). It might attribute to amorphous TiO2 in the Li4Ti5O12 thin films. Li ions may be expected to react with H2O to Li2O, which decreased the capacity.

    中文摘要 I 英文延伸摘要 IV 誌謝 XV 目錄 XVI 圖目錄 XX 表目錄 XXV 第一章緒論 1 1-1能源產業之現況及發展趨勢 1 1-2鋰離子電池之發展沿革與薄膜電池 3 第二章理論基礎與文獻回顧 8 2-1鋰離子電池之工作原理 8 2-2鋰離子電池之材料組成 10 2-2-1 陰極材料 10 2-2-2 電解液 12 2-2-3 陽極材料 12 2-4尖晶石Li4Ti5O12 氧化物 16 2-5研究動機與目的 24 第三章實驗步驟與方法 25 3-1 實驗流程 25 3-2 Nb摻雜Li4Ti5O12粉末的合成及燒結步驟 27 3-3 還原製程 28 3-4射頻磁控系統設計 28 3-5射頻磁控原料選擇、實驗參數及步驟 29 3-6粉末性質分析 32 3-6-1晶體繞射分析 32 3-6-2掃瞄式電子顯微鏡分析 32 3-6-3導電性質測試 32 3-7薄膜性質分析 33 3-7-1晶體結構分析 33 3-7-2薄膜成份分析 34 3-7-3高解析場發射掃描式電子顯微鏡 34 3-8 電池組裝測試 34 3-8-1粉末極片製作 34 3-8-2電池組裝 37 3-9 充放電測試 40 3-10循環伏安法(Cyclic Voltammetry, CV) 42 3-11交流阻抗法(AC Impedance) 43 3-12 Li4Ti5O12 導電行為轉換的測試—導電率動態變化量測 48 第四章鋰鈦氧化物粉末合成之研究 50 4-1合成氣氛對Nb摻雜Li4Ti5O12晶體結構之影響 50 4-2 合成氣氛對Nb摻雜Li4Ti5O12顯微結構分析 56 4-3合成氣氛對Nb摻雜Li4Ti5O12之電性分析 63 4-4不同氣氛熱處理Nb摻雜Li4Ti5O12之電化學分析 67 4-4-1充放電測試分析 67 4-4-2放電速率測試分析 71 4-4-4循環伏安分析 73 4-4-5交流阻抗分析 76 4-5 Li4Ti5O12及La0.56Li0.33TiO3與鋰金屬之界面反應 80 4-5-1鈦離子在八面體中心位置的分佈 85 4-5-2鋰離子在尖晶石結構與鈣鈦礦結構擴散路徑之差異 85 4-5-3鋰金屬-氧化物界面反應之速率決定步驟 88 第五章射頻磁控濺鍍Li4Ti5O12薄膜電極之製備與分析 89 5-1 濺鍍參數對Li4Ti5O12薄膜其成長速率及組成之影響 89 5-1-1鋰含量對薄膜組成之影響 89 5-1-2氧氣分率對成長速率及薄膜組成之影響 92 5-1-3射頻功率對成長速率及薄膜組成之影響 96 5-2熱處理溫度對薄膜顯微結構之影響 99 5-3熱處理溫度對薄膜組成之影響 100 5-4循環伏安分析 102 5-5合成氣氛對Li4Ti5O12薄膜電化學性質之影響 103 第六章 總結論 109 參考文獻 112

    1. J.-M. Tarascon and M. A. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, 414, p. 359. (2001)
    2. 陳金銘, “下世代高能量鋰電池與材料技術趨勢,” 工研院電子報, 10102. (2012)
    3. J. Hajek, French Patent, 8, p. 10. (1949)
    4. M. S. Whittingham, “Electrochemical energy storage and intercalation chemistry,” Science, 192, p. 1226. (1976)
    5. M. S. Whittingham, “Chalcogenide battery,” US Patent No. 4, 9, p. 052. (1976)
    6. “Battery Recall Update”, Adv. Batt. Technol., 25, p. 4. (1989)
    7. R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi and O. Yamamoto, “Carbon as negative Electrodes in Lithium Secondary Cells,” J. Power Sources, 26, p. 535. (1989)
    8. J. O. Besenhard, M. Hess and P. Komeda, “Dimensionally stable Li-alloy electrodes for secondary batteries,” Solid State Ionics,. 40-41, p. 525. (1990)
    9. M. Lazzari and B. Scrosati, “A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes,” J. Electrochem. Soc., 127, p. 733. (1980)
    10. T. Nagaura, and K. Tozawa, “Lithium ion rechargeable battery,” Prog. Batteries Solar Cells, 9, p. 209. (1990)
    11. E. Peled, C. Menachem, D. B. Tow and A. Melman, “Improved Graphite Anode for Lithium-Ion Batteries,” J. Electrochem. Soc., 143, No. 1. (1996)
    12. 蕭光哲,工業材料雜誌, 256, p. 157. (2008)
    13. 廖世傑,工業材料雜誌, 267, p. 71. (2009)
    14. K. Kanehori, K. Matsumoto, K. Miyauchi and T. Kudo, “Thin film solid electrolyte and its application to secondary lithium cell,” Solid State Ionics, 9-10, p. 1445. (1983)
    15. J. B. Bates, D. R. Gruzalski, C. F. Luck, “ Rechargeable solid state lithium microbatteries,” IEEE Micro Electro Mechanical Systems, 7-10, p. 82. (1993)
    16. R. B. Goldner, S. Slaven, T. Y. Liu, T. E. Haas, F. O. Arntz and P. Zerigian, “Properties of a carbon negative electrode in completely inorganic thin film Li-ion batteries with a LiCoO2 positive electrode,” Materials Research Society Symposium-Proceedings, 369, Solid State Ionics IV, p. 137. (1995)
    17. J. B. Bates and N. J. Dudney, “Thin Film Rechargeable Lithium Batteries for Implantable Devices,” American Society for Artificial Internal Organs Inc., 43, p. 644. (1997)
    18. 林美雲譯, “使用LiMn2O4系正極材料的鋰離子二次電池,” 工業材料, 145, p. 116. (1999)
    19. 洪逸明, “鋰離子二次電池陰極材料LiMn2O4±δ之合成及其電化學性質,” 國立成功大學材料科學及工程研究所博士論文, pp. 16-24. (2001)
    20. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 144, p. 1188. (1997)
    21. 黃可龍, 王兆翔, 劉素琴, “鋰離子電池原理與技術,” 五南圖書. (2010)
    22. E. Peled, C. Menachem, D. B. Tow, and A. Melman, “Improved graphite anode for Lithium-Ion Batteries,” J. Electrochem. Soc., 143, No. 1. (1996)
    23. S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, and K. Amine, “Layered Li(Ni0.5-xMn0.5-xM2x)O2 (M= Co, Al, Ti; x = 0, 0.005) cathode materials for Li-ion rechargeable batteries,” Journal of Power Sources, 112, p. 41. (2002)
    24. M.T. McDowell, S.W. Lee, C. Wang, Y. Cui, “The Effect of Metallic Coatings and Crystallinity on the Volume Expansion of Silicon During Electrochemical Lithiation/Delithiation,” Nano Energy, 16, pp. 401-410. (2012)
    25. E. M. Sorensen, S. J. Barry, Ha. K. Jung, J. R. Rondinelli, J. T. Vaughey, and K. R. Poeppelmeier, “Three-dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties,” Chem. Mater., 18, pp. 482-489. (2006)
    26. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature, 407, p. 496. (2000).
    27. J.B. Goodenough, D.G. Wickham, W.J. Croft, “Some Ferrimagnetic Properties of the System LixNi1-xO,” J Appl Phys, 29 , pp. 382-383. (1958)
    28. A.D. Robertson, A.R. Armstrong, P.G. Bruce, “Layered LixMn1-yCoyO2 Intercalation ElectrodesInfluence of Ion Exchange on Capacity and Structure upon Cycling,” Chem Mater, 13, pp. 2380-2386. (2001)
    29. H.S. Li, L.F. Shen, X.G. Zhang, J. Wang, P. Nie, Q. Che, B. Ding, “Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries,” J. Power Sources, 221, pp. 122-127. (2013)
    30. H. Yan, Z. Zhu, D. Zhang, Q.W. Li, “A new hydrothermal synthesis of spherical Li4Ti5O12 anode material for lithium-ion secondary batteries,” J. Power Sources, 219, pp. 45-51. (2012)
    31. K. M. Colbow, J. R. Dahn, R. R. Haering, “Structure and Electrochemistry of the Spinel Oxides LiTi2O4 and Li4/3Ti5/3O4,” J. Power Sources 1989, 26, pp. 397-402. (1989)
    32. A. Deschanv, B. Raveau, Z. Sekkal, “Synthesis and Crystallographic Study of New Solid Solution of Spinel Li1+xTi2 xO4 (0≦x≦0.33),” Mater. Res. Bull. 6, pp. 699-704. (1971)
    33. S. Scharner, W. Weppner, P. S. Beurmann, “Evidence of Two-Phase Formation Upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel,” J. Electrochem. Soc. 146, pp. 857-861. (1999)
    34. T. Ohzuku, A. Ueda, N. Yamamoto, “Zero‐Strain Insertion Material of Li[Li1 / 3Ti5 / 3]O 4 for Rechargeable Lithium Cells,” J. Electrochem Soc, 142, pp. 1431-1435. (1995)
    35. M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. L. Hecht, R. Frahm, and F. M. Mulder, “A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12,” Adv. Mater., 18, pp. 3169-3173. (2006)
    36. M. Wagemaker, A. V. D. Ven, D. Morgan, G. Ceder, F. M. Mulder, J. G. Kearley, “Thermodynamics of Spinel LixTiO2 from First Principles,” Chem. Phys., 317, pp. 130-136. (2005)
    37. T. F. Yi, Y. Xie, Y. R. Zhu, R. S. Zhu, H. Shen, “Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery,” Journal of Power Sources, 222, pp. 448-454. (2013)
    38. C.Y. Ouyang, Z.Y. Zhong, M.S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem., 9, pp. 1107-1112. (2007)
    39. C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, “Studies of Mg-Substituted Li4−xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries,” J. Electrochem. Soc., 148, pp. 102-104. (2001)
    40. A.D. Robertson, L. Trevino, H. Tukamoto, J.T.S. Irvine, “New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries,” J. Power Sources 81-82, pp. 352-357. (1999)
    41. Y. J. Hao, Q. Y. Lai, J. Z. Lu, X. Y. Ji, “Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials,” Ionics, 13, pp. 369-373. (2007)
    42. S. Huang, Z. Wen, X. Zhu, Z. Lin, “Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries,” J. Power Sources, 165, pp. 408-412. (2007)
    43. X. Li, M. Qu, Z. Yu, “Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries,” J. Alloys Compd., 487, pp. 12-17. (2009)
    44. Z. Zhong, “Electrochem. Synthesis of Mo4 + Substituted Spinel Li4Ti5 − xMoxO12,” Solid-State Lett., 10, pp. 267-269. (2007)
    45. T. F. Yi, J. Shu, Y. R. Zhu, X. D. Zhu, C. B. Yue, A. N. Zhou, R. S. Zhu, “High-performance Li4Ti5-xVxO12 (0≦x≦0.3) as an anode material for secondary lithium-ion battery,” Electrochim. Acta, 54, pp. 7464-7470. (2009)
    46. S. Huang, Z. Wen, Z. Gu, X. Zhu, “Preparation and cycling performance of Al3+ and F− co-substituted compounds Li4AlxTi5-xFyO12-y,” Electrochim. Acta, 50, pp. 4057-4062. (2005)
    47. Y. Qi, Y. Huang, D. Jia, S. J. Bao, Z. P. Guo, “Preparation and Characterization of Novel Spinel Li4Ti5O12-xBrx Anode Materials,” Electrochim. Acta, 54, pp. 4772-4776. (2009)
    48. I. A. Leonidov, O. N. Leonidova, L. A. Perelyaeva, R. F.Samigullina, S. A. Kovyazina, and M. V. Patrakeev, “Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12,” Physics of the Solid State, 45, pp. 2183-2188. (2003)
    49. K.T. Fehr, M. Holzapfel, A. Laumanna, E. Schmidbauer, “DC and AC conductivity of Li4/3T i5/3O4 spinel,” Solid State Ionics, 181, pp. 1111-1118. (2010)
    50. David Young, Alan Ransil, Ruhul Amin , Zheng Li, and Y.M. Chiang, “Electronic Conductivity in the Li4/3Ti5/3O4-Li7/3Ti5/3O4 System and Variation with State-of-Charge as a Li Battery Anode,” Adv. Energy Mater., 3, pp. 1125-1129. (2013)
    51. J.H. Kim, S.W. Song, H. Van Hoang, C.H. Doh, D.W. Kim, “ Study on the Cycling Performance of Li4Ti5O12 Electrode in the Ionic Liquid Electrolytes Containing an Additive,” Bull. Korean Chem. Soc, 32, pp. 105-108. (2011)
    52. B.B. Tian, H.F. Xiang, L. Zhang, H.H. Wang, “Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0V,” J. Solid State Electr., 16, pp. 205-211. (2012)
    53. H. J. Stein, “Electrical Studies of Neutron-Irradiated n-Type Si: Defect Structure and Annealing,” Phys. Rev., 163, pp. 801-808. (1967)
    54. 邵元華, 朱果逸, 董獻堆, 張柏林,“ 電化學方法-原理和應用,” 化學工業, pp. 169-287. (2005)
    55. K. Y. Yang, K. Z. Fung, “Ionic to mixed ionic/electronic conduction transition of chemically lithiated Li 0.33 La 0.56 TiO 3 at room temperature: Lithium-ion-motion dependent electron hopping,”Applied physics letters, 89, p. 024105. (2006)
    56. K. Kowalski, M. Ijjaali, T. Bak, B. Dupre, J. Nowotny, M. Rekas, C. C. Sorrell, “Kinetics of Nb incorporation into barium titanate,” J. Phys. Chem. Solids, 62, pp. 531-535. (2001)
    57. J. Nowotny, M. Rekas, “Defect chemistry of BaTiO3,” Solid State Ionics, 49, pp. 135-154. (1991)
    58. W. Preis, W. Sitte, “Electronic conductivity and chemical diffusion in n-conducting barium titanate ceramics at high temperatures,” Solid State Ionics, 177, pp. 3093-3098. (2006)
    59. H. I. Yoo, C. E. Lee, “Two-Fold Diffusion Kinetics of Oxygen Re-Equilibration in Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 88, pp. 617-623. (2005)
    60. J. R. Akse, H. B. Whitehurst, “Diffusion of titanium in slightly reduced rutile,”J. Phys Chem. Solids, 39, pp. 457-465. (1978)
    61. K. Hoshino, N. L. Peterson, C. L. Wiley, “Diffusion and point defects in TiO2-x,” J. Phys Chem Solids, 46, pp. 1397-1411. (1985)
    62. R. D. Cannon, “Electron Transfer Reactions,” Butterworths, London. (1980)
    63. G. C. Allen, J. M. Dyke, “An investigation of the optical spectrum of lithium doped nickel oxide,” Chem. Phys. Lett., 37, p. 391. (1976)
    64. M. Wilkening, R. Amade, W. Iwaniak and P. Heitjans,” Ultraslow Li diffusion in spinel-type structured Li4Ti5O12-A comparison of results from solid state NMR and impedance spectroscopy,” Phys. Chem., 9, pp. 1239-1246. (2007)
    65. A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya, Y. I. Gornikov, “Study of complex oxides with the composition La2/3–xLi3xTiO3,” Inorg. Mater., 23, p. 412. (1987)
    66. A. D. Robertson, S. Garcia Martin, A. Coats, A. R. West, “Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5–3xRE0.5+xTiO3: RE = La, Nd,” J. Mater. Chem., 5, pp. 1405. (1995)
    67. E. Matsui, Y. Abe, and M. Senna,” Solid-State Synthesis of 70 nm Li4Ti5O12 Particles by Mechanically Activating Intermediates with Amino Acids,” J. Am. Ceram. Soc., 91, pp. 1522-1527. (2008)
    68. J. Xiong, S. N. Das, S. Kim, J. Lim, H. Choi , J. M. Myoung,” Photo-induced hydrophilic properties of reactive RF magnetron sputtered TiO2 thin films,” Surface & Coatings Technology, 204, pp. 3436-3442. (2010)
    69. 張榮芳,“反應磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究”, 國立成功大學材料科學及工程學系博士論文, p.35. (2001)
    70. Feng Wang, LijunWu, Chao Ma, Dong Su, Yimei Zhu and Jason Graetz,“ Excess lithium storage and charge compensation in nanoscale Li4+xTi5O12,” Nanotechnology, 24, p. 424006. (2013)
    71. H. T. Fang1, M. Liu, D. W. Wang, T. Sun, D. S. Guan, F. Li, J. Zhou, T. K. Sham and H. M. Cheng, “ Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays,” Nanotechnology, 20, p. 225. (2009)
    72. W. J. Borghols, D. L. Hecht, U. Haake, W. Chan, U. Lafont, E. M. Kelder and M. Wagemaker,“ Lithium storage in amorphous TiO2 nanoparticles,” Journal of The Electrochemical Society, 157, pp. 582-588. (2010)

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE