簡易檢索 / 詳目顯示

研究生: 葉宗霖
Yeh, Tsung-Lin
論文名稱: 氣體中心旋流同軸噴注器的噴霧特性研究
A study on the spray characteristics of the gas centered swirl coaxial injector for liquid rocket engine
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 87
中文關鍵詞: 液態火箭發動機氣體中心旋流同軸噴注器液態氧/煤油噴霧特性
外文關鍵詞: liquid rocket engine, gas-centered swirl coaxial injector, Lox/kerosene, spray characteristics
相關次數: 點閱:96下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來太空推進發展上興起一波追求低汙染及低成本的風潮,因此傳統的高毒性、可自燃性推進劑將漸漸的被較安全且環保的推進劑取代。在性能、安全性及成本的多重考量下,液態氧/煤油成了最適合發展重型運載火箭的推進劑組合。在眾多發動機循環中,富氧燃燒分級循環是使用液態氧/煤油此一推進劑組合中循環效率最高的,但西方世界對於此循環卻非常陌生。富氧燃燒分級循環在俄羅斯已經有數十年發展的歷史,而俄羅斯也已成功開發數款採用此循環的發動機,如RD-170、RD-180等。由於太空推進有國防與國家利益上的考量,因此世界各國都將研發資料與數據列為機密,因此我們有必要自行開展富氧燃燒分級循環的研究,建立我國在液態火箭推進上的深厚基礎。
    噴注器掌握著液態火箭發動機的工作穩定性與性能,噴注器的設計與推進劑種類、燃燒室幾何型態、操作需求(質流量、壓力差、操作壽命)有關。另外因為氣體中心旋流同軸噴注器的氣液流體配置與傳統的剪力同軸噴注器相反,且相關設計方法及噴霧特性參考資料極少,因此本研究目的為研究並建立氣體中心旋流同軸噴注器(gas-centered swirl co-axial injector, GCSC injector)的基礎噴霧特性,在冷流實驗中透過改變噴注器氣體管道內縮比(recess ratio)及氣液動量通量比(momentum flux ratio)來探討操作動量通量比及幾何設計上的混合腔長度改變對噴霧形態的影響,進而改變環境壓力以探討在不同環境壓力下噴霧型態的變化,並搭配視流法與雷射光學量測法,初步定性地探討氣體中心旋流同軸噴注器的噴霧特性,建立噴霧角(spray angle)、噴霧形態(spray pattern)、二維質量機率分布(two dimensional mass probability distribution)、索特平均粒徑(Sauter mean diameter)隨實驗參數變動的趨勢變化,並將資料統整作為後續發展富氧燃燒分級循環發動機的參考基礎。冷流實驗結果顯示內縮比與動量通量比均對噴霧特性有影響,且氣體中心旋流同軸噴注器的噴霧特性與剪力同軸噴注器有些差異存在。GCSC噴注器的噴霧角隨著氣液動量通量比與內縮比增加而下降,此特性與剪力同軸噴注器相反。由於噴霧角代表液滴在空間中的分布情形,因此較小的噴霧角表示液滴密度較高,此現象可能會顯著地影響點火及燃燒效能。另外GCSC噴注器在大氣環境下會出現內外兩噴霧區,隨著內縮比及動量通量比的增加,噴霧轉為由內區主導,此時液膜被霧化的較完全,因此噴注器出口看不到未霧化的液塊及大液滴存在。另外發現內縮比與動量通量比的搭配可以有效的改變霧化形態,較大的內縮比可以搭配較低的動量通量比即可得到較小內縮比搭配較高動量通量比的噴霧效果,此一特性可以作為未來設計噴注器的基礎。高壓環境下噴霧形態較常壓環境緻密且噴霧角度較常壓環境下小,且內外兩區的差別不顯著,在高壓下主要是由內區主導,而高壓下的質量機率分布形態也比常壓環境均勻且對稱。

    The objective of this thesis is to investigate further into the spray characteristics of the gas-centered swirl injector, which is the injector type recently attracts intensive research interests and is to be used for Lox/Kerosene propellant combination for future economical green propulsion for various space applications. The experiment method used in this thesis include spray visualization, such as spray angle measurement and spray pattern identification, and planar laser induced fluorescence for spray mass distribution. The experimental parameters are the momentum flux ratio between central gas and co-axial swirl liquid, the recess ratio of the central tube relative to the coaxial outer tube and the environmental pressure. The experimental results show that when in atmospheric and high pressure conditions, the spray angle decreases as the momentum flux ratio and the recess ratio are increased. But the variation of spray angle in high pressure condition is smaller as compared to atmospheric condition. The spray pattern shows two distinct spray zones, the inner and outer zones, for cases of atmospheric condition, but the outer zone disappears as the increase of the recess ratio and momentum flux ratio. The planar fluorescence measurement results show that at atmospheric condition the mass distribution of the spray is asymmetric and the high density region become large as the momentum flux ratio and recess ratio are increased. When at high pressure condition, the spray is dominated by the inner zone, and the mass distribution is rather symmetric and the distribution becomes flat when the momentum flux ratio and recess ratio are increase. We conclude that this type of injector is recommended to operate at higher gas velocities to acquire good and uniform atomization. A key breakup mechanism for the gas-centered swirl coaxial injector is proposed based on the Kelvin-Helmholtz instability of the momentum flux ratio and the recess ratio between the central gas and the coaxial liquid. The length of the gas-centered coaxial injector’s mixing cup affects the key breakup mechanism and can significantly affect combustion efficiency.

    摘要 I Extended Abstract IV 誌謝 XVI 目錄 XVIII 表目錄 XX 圖目錄 XXI 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-2-1富氧燃燒分級循環介紹 2 1-2-2氣液同軸噴注器的型式 3 1-2-3 旋流噴注器的型態 5 1-2-4 霧化現象 6 1-2-5 Kelvin-Helmholtz 不穩定 6 1-2-6剪力同軸噴注器霧化理論與機制 6 1-2-7噴霧機制數學式 8 1-2-8 旋流同軸噴注器的冷流噴霧 9 1-2-9旋流同軸噴注器的熱流噴霧 15 1-3研究動機及目的 16 第二章 實驗設備 18 2-1旋流同軸噴注器機構 18 2-2冷熱流工作流體供應系統 18 2-3大氣噴霧台架 19 2-4 高壓噴霧觀察艙 19 2-5 噴霧影像觀察暨擷取系統 20 2-6 PLIF平面雷射誘發螢光系統 21 第三章 實驗步驟及方法 23 3-1 同軸旋流噴注器實驗條件 23 3-2 流量及壓力的量測與校正 25 3-3 噴霧實驗操作條件 26 3-4 PLIF光學系統操作方式 27 3-5 噴霧角分析 29 3-6噴霧型態拍攝 30 第四章 實驗結果與討論 32 4-1大氣環境噴霧實驗觀察 32 4-1-1內縮比對噴霧角度之影響 32 4-1-2動量通量比對噴霧角度之影響 33 4-1-3內縮比對噴霧形態的影響 33 4-1-4動量通量比對噴霧形態的影響 35 4-1-5內縮比與動量通量比對質量機率分布的影響 35 4-2高壓環境(200 psi)噴霧實驗觀察 37 4-2-1內縮比對噴霧角度之影響 37 4-2-2動量通量比對噴霧角度之影響 38 4-2-3內縮比對噴霧形態的影響 38 4-2-4動量通量比對噴霧形態的影響 38 4-2-5內縮比與動量通量比對質量機率分布的影響 39 4-3高壓(200psi)與常壓環境之噴霧形態比較 41 4-4氣體中心旋流同軸噴注器噴霧形成機制 42 第五章 結論 44 第六章 未來工作 47 參考文獻 48 表格 54 圖形 57

    [1]Bayvel L., Orzechowski, Z. Liquid Atomization, Taylor & Francis, 1993.
    [2]Bazarov, V.G., Yang, V., "Liquid-Propellant Rocket Engine Injector Dynamics," Journal of Propulsion and Power, vol. 14, no. 5, 9-10 1998.
    [3]Cheng, G.C., Davis, R.D., Johnson, C.W., Jeffrey, A.M., Greisen, D.A., Cohn, R.K., "Development of GOX/Kerosene Swirl Coaxial Injector Technology," in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville Alabama. 20-23 July 2003.
    [4]Cheng, G.C., Johnson, C.W., Muss, J.A., Cohn, R.K., "Swirl Coaxial Injector Development Part 2 : CFD Modeling," in JANNAF Joint Propulsion Metting, Destion, FL, 2002.
    [5]Cohn, R.K., Strakey, P.A., Bates, R.W., Talley, D.G., "Swirl Coaxial Injector Development," in 44th AIAA Aerospace Sciences Conference, Reno, NV, 9-12 July 2003.
    [6]Dongjun Kim, Poonggyoo Han, Ji-Hyuk Im, Youngbin Yoon, Bazarov, V.G., "Effect of Recess on the Spray Characteristics of Liquid-Liquid Swirl Coaxial Injectors," Journal of Propulsion and Power, vol. 23, no. 6, November-December 2007.
    [7]Fu Qing-fei, Yang Li-jun, Qu Yuan-yuan, "Measurement of Annular Liquid Film Thickness in an Open-end Swirl Injector," Aerospace Science and Technology, vol. 15, pp. 117-124, 2011.
    [8]Gomi, H., "Penumatic Atomization with Coaxial Injectors," 1984.
    [9]Gujeong Park, Ingyu Lee, Jungho Lee, Youngbin Yoon, "Measurement of Film Thickness in Gas-Centered Swirl Coaxial Injectors," in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, 28-30 July 2014.
    [10]Ingebo, R., "Gas Property Effects on Dropsize of Simulated Fuel Sprays," Journal of Propulsion and Power, vol. 7, no. 4, pp. 467-472, 1991.
    [11]Ji-Hyuk Im, Seongho Cho, Youngbin Yoon, Insang Moon, "Comparative Study of Spray Characteristics of Gas-Centered and Liquid-Centered Swirl Coaxial Injectors," Journal of Propulsion and Power, vol. 26, no. 6, November-December 2010.
    [12]Kendrick, D., Herding, G., Socuflaire, P., Rolon, C., Candel, S., "Effects of a Recess on Cryogenic Flame Stabilizaiton," Combustion and Flame, vol. 118, no. 3, pp. 327-339, 1999.
    [13]Kenny, R.J., Hulka, J.R., Moser, M.D., Rhys, N.O., "Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics," Journal of Propulsion and Power, vol. 25, no. 4, July-August 2009.
    [14]Kuo, K. K., Recent Advances in Spray Combustion, Volume I: Spray Atomization and Drop Burning Phenomena Volume 1, AIAA, 1996.
    [15]Kuo, K. K., Recent Advances in Spray Combustion, Volume II: Spray Atomization and Drop Burning Phenomena, AIAA, 1996.
    [16]Lefebvre, A.H., Atomization and Sprays, Hemisphere Publishing Corporation, 1989.
    [17]Lesheras, J.C., Hopfinger, E.J., "Break-up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet," Journal of Fluid Mechanics, vol. 357, pp. 351-379, 1998.
    [18]Lesheras, J.C., Hopfinger, E.J., "Liquid Jet Instability and Atomization in a Coaxial Gas Stream," Journal of Fliud Mechnics Annu. Rev., vol. 32, pp. 275-308, 2000.
    [19]Li Xuan, Tian Liang, Zhu Shaohua,Xu Xu, "The Preliminary Study of Oxygen-Centered Kerosene-Swirl Coaxial Injector," in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland OH, 28-30 July 2014.
    [20]Lightfoot, M.D.A., Danczy, k S.A., Talley, D.G., "Atomization in Gas-Centered Swirl-Coaxial Injectors," in ILASS America, 19th Annual Conference on Liquid Atomization and Spray Systems, Toronto,Canada, May 2006.
    [21]Lightfoot, M.D.A., Danczyk, S.A., "Spray Nonuniformities in Gas-Centered Swirl-Coaxial Injectors," in 11th Annual Conference on Liquid Atomization and Spray Systems, Vali, Colorado, July 2009.
    [22]Lightfoot, M.D.A., Danczyk, S.A., Talley, D.G. , "Atomization Rate of Gas-Centered Swirl-Coaxial Injectors," in ILASS America, 21st Annual Conference on Liquid Atomizatio and Spray Systems, Orlando, Florida, May 2008.
    [23]Lightfoot, M.D.A., Schumaker, S.A., Danczyk, S.A., Villasmil, L., "The Effect of Swirl on Gas-Centered Swirl Coaxial Injector Sprays," in JANNAF Joint Meeting, Huntsville, AL, 5-9 December 2011.
    [24]Long, M.R., Anderson, W.E., "Oxidizer-Rich Staged Combustion Cycle Preburner and Main Chamber Injector Testing at Purdue University," in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Lauderdale, Florida, 11-14 July 2004.
    [25]Long, M.R., Bazarov, V.G., Anderson, W.E., "Main Chamber For Advanced Hydrocarbon Booster Engines," in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, 20-23 July 2003.
    [26]Lux, J., Haidn, O., "Effect of Recess in High-Pressure Liquid Oxygen/Methane Coaxial Injection and Combustion," Journal of Propulsion and Power, vol. 25, no. 1, January-Feburary 2009.
    [27]Manski, D., "Cycles for Earth-to-Orbit Propulsion," Journal of Propulsion and Power, vol. 14, no. 5, September-October 1998.
    [28]Meyer, T.R., Lightfoot, M.D.A., Gord, J.R., "Ballistic-Imaging Study of Liquid-Breakup in Gas-Centered Swirl-Coaxial Rocket Sprays," in 11th Triennial International Annual Conference on Liquid Atomization and Sprays, Vali, Colorado, July 2009.
    [29]Meyer, W., Krulle, G., "Rocket Engine Coaxial Injector Liquid/Gas Interface Flow Phenomena," Journal of Propulsion and Power, vol. 11, no. 3, May-June 1995.
    [30]Meyer, W., Tamura, H., "Propellant Injection in a Liquid Oxygen/Gaseous Hydrogen Rocket Engine," Journal of Propulsion and Power, vol. 12, no. 6, November-December 1996.
    [31]Miller, K., Sisco, J., Nugent, N., Anderson, W., "Experimental Study of Combustion Instabilities in a Single-ELEMENT Coaxial Injector," in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 10-13 July 2005.
    [32]Miller, M., Sisco, J., Nugent, N., Anderson, W., "Combustion Instability with a Single-Element Swirl Injector," Journal of Propulsion and Power, vol. 23, no. 5, September-October 2007.
    [33]Muss ,J.A., Johonson, C.W., Cohn, R.K., Strakey, P.A., Bates, R.W., Talley, D.G., "Swirl Coaxial Injector Development Part 1 : Test and Results," in 49th JANNAF Joint Propulsion Meeting, Destin FL, April 8-12 2002.
    [34]Muss, J.A., Johonson, C.W., Cheng, G.C., Cohn, R.K., "Numerical Cold Flow and Combustion Characterization of Swirl Coaxial Injectors," in 41th AIAA Aerospace Science Conference, Reno, NV, 9-12 January 2003.
    [35]Sankar, S.V., Maher, K.E., Robart, D.M., Bachalo, W.D., "Rapid Characterization of Fuel Atomizers Using an Optical Patternator," Journal of Engineering for Gas Turbines and Power, vol. 121, pp. 409-414, July 1999.
    [36]Schumaker, S.A., Lightfoot, M.D.A., Danczyk, S.A., "Effect of Cup Length on Film Profiles in Gas-Centered Swirl-Coaxial Injectors," in 47th AIAA Aerospace Science Meeting, Orlando OL, 5-8 January 2009.
    [37]Wanger, R., "Influence of Injector Element Design on Heat Transfer," in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 9-12 July 2006.
    [38]Yang, V., Anderson, W., "Liquid rocket Engine Combustion Instability, " AIAA, 1995.
    [39]Yang, V., Habiballah, M.; Hulka, J.; Popp, M., " Liquid Rocket Thrust Chambers - Aspects of Modeling, Analysis, and Design - Progress in Astronautics and Aeronautics," Volume 200, American Institute of Aeronautics and Astronautics, 2004.
    [40]黃柏霖, "5lbf NTO/MMH火箭推進劑衝擊霧化模擬之PLIF實驗觀察, " 國立成功大學航空太空工程研究所碩士論文, 2005.

    下載圖示 校內:2018-08-28公開
    校外:2018-08-28公開
    QR CODE