簡易檢索 / 詳目顯示

研究生: 林青達
Lin, Cing-Da
論文名稱: LiCF3SO3於有機溶劑與高分子凝膠中導電性之分子模擬
Molecular Simulations of the Conductivity of LiCF3SO3 in Organic Solvent and Polymer Gel
指導教授: 施良垣
Shy, Liang-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 188
中文關鍵詞: 模擬擴散
外文關鍵詞: simulation, diffusion
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇以分子動力模擬方法研究鋰鹽LiCF3SO3於有機溶劑propylene carbonate (PC)、dimethoxyethane (DME)、tetrahydrofuran (THF)及於N,N-dimethylformamide (DMF) /高分子polyvinylidene fluoride (PVDF)膠態電解質之擴散、導電度、配位及離子結合特性。模擬之溫度為298、308、328與348 K。鋰鹽濃度在雙成分系統為0.5與1.0 M。在凝膠系統中,DMF:LiCF3SO3分別為6:1與15:1,PVDF:DMF為3:7。
    模擬所得之擴散係數與NMR測量值相當接近,且比導電度值也與實驗傾向一致。模擬結果顯示,溫度、濃度之改變與高分子之添加對配位距離無明顯影響。鋰離子周圍第一配位殼層內之溶劑分子數和介電常數有關,在高介電常數之PC與DMF中,溶劑配位數大,其值約為3.8,但在低介電常數之DME與THF中,溶劑配位數約為1.7。雙成分系統中,由徑向分佈函數圖可以發現,鋰離子最靠近DME之氧原子,其次為THF之氧原子,最後是PC上的氧原子。溶劑為PC時,小離子群之比率多於DME及THF者,顯示陰、陽離子結合程度下降。DME及THF較易有群聚現象,不利於導電。以1.0 M為例,含DME及THF系統之自由離子機率分別為0.155與0.130,但含PC者則為0.540。
    凝膠系統中,鋰鹽濃度高有利於離子對形成,但不利於鋰離子與溶劑及PVDF之配位。當鋰鹽濃度高時,陰、陽離子互相結合之現象愈明顯,造成離子群內之平均離子數增加,且自由離子比率下降。以溫度308 K為例,DMF:LiCF3SO3 從15:1變為6:1時,自由離子比率由0.435下降至0.255。添加PVDF後,系統呈膠態,且自由離子比率也會下降。以溫度308 K,DMF:LiCF3SO3=6:1為例,添加PVDF前、後,自由離子比率由0.350降至0.255。

    Molecular dynamics simulations have been used to study the diffusion, conductivity, coordination and ion association properties for LiCF3SO3 in organic solvents propylene carbonate (PC)、dimethoxyethane (DME)、tetrahydrofuran (THF) and in N,N-dimethylformamide (DMF) / polyvinylidene fluoride (PVDF) gel. Simulations were conducted at 298、308、328 and 348 K. The salt concentration in binary system is 0.5 and 1.0 M. In gel system, DMF:LiCF3SO3 ratio is 6:1 and 15:1, respectively, and PVDF:DMF ratio is 3:7 .
    The simulated diffusion coefficients are close to that obtained from the NMR measurement and specific conductivities agree well with the experiment. The simulations show that the changes in temperature and concentration, and the addition of PVDF polymer have little effect on coordination distances. The number of solvent molecules around the first coordination sphere of Li+ ion is related to the dielectric constant of solvent. The coordination number in high dielectric PC and DMF (about 3.8 ) is greater than that in low dielectric in DME and THF (about 1.7 ). It is known from the radial distribution function that in binary systems Li+ is closest to oxygen atom of DME, followed by THF, and then PC. In PC system, the fraction of small ion cluster is higher than that in DME and THF, indicating the low degree of ion association. Ion aggregation occurs more easily in DME and THF containing systems, which leads to the relatively low conductivity. For example, the fractional free ions in 1.0 M DME and THF systems is 0.155 and 0.130 , respectively, but whose value is remarkably large in PC system ( 0.54 ).
    In the gel system, the high salt concentration facilitates the ion pair formation, but depletes solvent and PVDF coordination around Li+ ion. At high salt concentration, ion association between cations and anions is more pronounced, resulting an increasing cluster size, and a decreasing fractional free ions. Take temperature 308 K for example, as DMF:LiCF3SO3 ratio varies from 15:1 to 6:1, the fraction of free ions decreases from 0.435 down to 0.255. With the addition of PVDF, the system is gel-like, and the fractional free ions descends. For example, after the addition of PVDF at temperature 308 K and DMF:LiCF3SO3=6:1 , the fractional free ions decreases from 0.350 to 0.255.

    中文摘要............................................ I 英文摘要 ..........................................III 誌謝 ................................................V 目錄 ...............................................VI 圖目錄 ............................................VII 表目錄 .............................................XI 第一章 緒論.........................................1 第二章 電腦模擬....................................10 2-1 分子動力模擬原理........................10 2-2 力場....................................11 2-3 模擬條件................................16 2-4 相關數據計算............................18 第三章 結果與討論..................................22 3-1 擴散係數與鋰鹽濃度、溫度及添加PVDF的關係....22 3-1-1 鋰鹽濃度的效應..............................22 3-1-2 溫度的效應..................................23 3-1-3 添加PVDF的影響..............................23 3-1-4 擴散係數與導電度............................35 3-2 徑向分佈函數圖分析.........................54 3-2-1 鋰鹽濃度的效應..............................54 3-2-2 添加PVDF的影響..............................79 3-2-3 溫度效應的影響..............................87 3-3 配位機率的分析.............................95 3-3-1 LiCF3SO3/PC、DME、THF系統...................95 3-3-2 LiCF3SO3/DMF/PVDF系統.......................96 3-4 離子群聚的分析.............................105 第四章 結論.......................................114 參考文獻 ..........................................116 附錄A ............................................119 附錄B ............................................145 附錄C ............................................156

    1.Ph. Biensan, B. Simon, J.P. Peres, A. de Guibert, M. Broussely, J.M. Bodet, and F. Perton, J. Power Sources 1999, 81-82, 906-912.

    2.A.M. Andersson, M. Herstedt, A.G. Bishop, and K. Edstrom, Electrochimica Acta 2002, 47, 1885-1898.

    3.Y. Saito, H. Yamamoto, H. Kageyama, and O. Nakamura, J. Mater. Sci. 2000, 35, 809-812.

    4.N.S. Mohamed, and A.K. Arof, Phys. Stat. Sol. (a) 2004, 201, 3096-3101.

    5.S.Z. Abdullah, A. Abdullah, T. Winie, and R.H.Y. Subban, Solid State Science and Technology 2009, 17, 65-74.

    6.P. Vickraman, V. Aravindan, and M. Selvambikai, Ionics 2009, 15, 433-437.

    7.M.J. Williamson, J.P. Southall, H.V.St.A. Hubbard, G.R. Davies, and I.M. Ward, Polymer 1999, 40, 3945-3955.

    8.I.M. Ward, M.J. Williamson, H.V.St.A. Hubbard, J.P. Southall, and G.R. Davies, J. Power Sources 1999, 81-82, 700-704.

    9.C.Y. Chiang, Y.J. Shen, M. Jaipal Reddy, and Peter P. Chu, J. Power Sources 2003, 123, 222-229.

    10.S.F. Johnston, I.M. Ward, J. Cruickshank, and G.R. Davies. Solid State Ionics 1996, 90, 39-48.

    11.J.C. Soetens, C. Millot, and B. Maigret. J. Phys. Chem. A 1998, 102, 1055-1061.

    12.L. Doucey, M. Revault, A. Lautie, A. Chausse, and R. Messina, Electrochimica Acta 1999, 44, 2371-2377.

    13.陳輝龍, 碩士論文, 四氟硼酸鋰於混合有機溶劑中導電性之電腦模擬, 國立成功大學 (2001).

    14.郭人華, 碩士論文, 聚乙醚電解質溶液導電性之分子模擬, 國立成功大學 (2002).

    15.沈政勳, 碩士論文, 鋰鹽溶於丁內酯之導電性之分子動力模擬, 國立成功大學 (2003).

    16.D.N. Theodorou, and U.W. Suter, Macromolecules 1985, 18, 1206-1214.

    17.J.N. Baskir, and U.W. Suter, Macromolecules 1988, 21, 1877-1878.

    18.黃建中, 碩士論文, LiCF3SO3於有機溶劑中導電性之分子模擬, 國立成功大學 (2003).

    19.顏詩瑋, 碩士論文, LiCF3SO3/N,N-Dimethylformamide/Polyvinylidene fluoride凝膠導電性之分子模擬, 國立成功大學 (2004).

    20.Discover user guide Part 1, Biosym/MSI Technologies V4.0, (1996).

    21.O. Borodin, G.D. Smith, Macromolecules 2000, 33, 2273.

    22.M.A. Ratner. “Polymer electrolyte Review-1”, Elsevier Applied Science, London 1987, 173.

    23.B.H. Zimm, J. Chem. Phys. 1953, 21, 934.

    24.B.H. Zimm, and J.L. Lundberg, J. Chem. Phys. 1956, 60, 425.

    25.J.L. Lundberg, J. Macromol. Sci. 1969, 133, 693.

    26.S.M. Urahata, and M.C.C. Ribeiro, J. Chem. Phys. 2005, 122, 24511.

    27.E. Kucukpinar, and P. Doruker, Polymer 2003, 44, 3607-3620.

    28.M. Takeuchi, Y. Kameda, Y. Umebayashi, S. Ogawa, T. Sonoda, S. Ishiguro, M. Fujita, and M. Sano, J. Molecular Liquids 2009, 148, 99-108.

    29.P.V.S.S. Prabhu, T.P. Kumar, P.N.N. Namboodiri, R. Gangadharan,J. Appl. Electrochem. 1993, 23, 151-156.

    30.R.M. Fuoss, J. Am. Chem. Soc. 1935, 57, 2604.

    31.L.D. Pettit, and S. Bruckenstein, J. Am. Chem. Soc. 1966, 88, 4783-4789.

    QR CODE