簡易檢索 / 詳目顯示

研究生: 賴奕勳
Lai, Yi-Shiun
論文名稱: 蓄熱式加熱爐球狀式蓄熱體熱液動性能分析
Thermal-Hydraulic Analysis for a Packed Sphere Bed Regenerator in a Reheating Furnace
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 填充床加熱爐蓄熱體交替時間熱效率數值模擬
外文關鍵詞: Packed bed, heat exchanger, furnace, Numerical Simulation, Switching time, regenerator
相關次數: 點閱:126下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 填充床目前廣為應用在不同的工業領域,在化學反應、熱儲存及蓄熱式熱交換等扮演重要的腳色。蓄熱體填充床具備高熱傳面積、化學安定性、高溫耐受性佳等特性,其中蓄熱式加熱爐應用蓄熱式熱交換器進行廢熱回收,預熱空氣,減少熱能之浪費,而蓄熱體高溫耐受性可以使熱交換器設置於加熱爐高溫的區域直接進行熱回收,減少廢氣混和均勻化的熱損耗。為了達到精準控制加熱爐的爐溫,蓄熱體的熱效率是主要影響因素。
    本文分別建立三維蓄熱體穩態模型、二維蓄熱體暫態模型、一維計算來探討蓄熱體作為熱回收系統之性能分析。由於填充床是由數十層蓄熱球體堆疊而成,因數值模擬限制,故將模型簡化以穩態及較少的堆疊層數之三維模型模擬蓄熱體填充床之熱液動性質,討論不同進口流速下之熱對流係數及壓降,最後由數值結果做回歸分析得到紐賽數及摩擦因子對雷諾數之關係式。並以二維蓄熱體模型進行暫態分析,模擬單元流道暫態之熱流場,且探討冷熱流體週期性交替時間對蓄熱體熱效率之影響,其結果顯示交替時間較短會有較佳的蓄熱體熱效率。最後為了提高計算效率,利用Fortran撰寫一維暫態蓄熱體計算程式,可快速得到蓄熱體熱交換器進入週期性穩態後之熱效率,且探討各加熱爐區的蓄熱體熱效率及廢氣回收率對熱效率之影響,計算結果得到各區熱效率都達到90 %以上。

    The packed beds are widely applied for different industry and technology, such as heat exchangers, heat recover, thermal energy storages and chemical reactors. This paper is going to research about ceramic fixed bed heat regenerator in regenerative furnaces which are common to be used to reduce waste heat. The kind of furnace can both reduce the fuel and provide high temperature air importance part of high temperature air combustion burning system. This paper created three models, three-dimensional steady sphere type hydrothermal dynamic model, two-dimensional unsteady cylinder type hydrothermal dynamic model, and one-dimension calculation program. Because of the full model of packed bed is too huge to simulate, here set few rows to get the steady hydraulic performance (pressure drop, heat coefficient). In addition to steady model, the two-dimensional unsteady simulation model has been established. The 2-D model can get dynamic temperature profiles of gases and heat-storing cell-tunnel in fixed bed. This paper compared effect of different switching time to the thermal effectiveness, and got the conclusion that the shorter switching time, the better effectiveness. Finally, the effectiveness of packed bed at every regions of furnace was calculated by 1-D calculation program and showed that each side of packed bed was over 95% with normal operating condition.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號說明 XXII 第一章、緒論 1 1.1前言 1 1.2文獻回顧 4 1.3研究目的 10 第二章、理論分析 13 2.1三維及二維物理模型 13 2.1-1三維模型與二維模型之基本假設 15 2.1-2二維與三維模型之統御方程式 15 2.1-3三維模型之邊界條件 22 2.1-4二維模型初始條件與邊界條件 23 2.2一維蓄熱體物理模型 28 2.2-1一維模型之基本假設 28 2.2-2一維模型之統御方程式 29 2.2-3一維模型之邊界條件 32 第三章、數值方法 46 3.1三維與二維模型之數值方法 46 3.1-1數值方法 46 3.1-2三維蓄熱體穩態熱液動分析之解題流程 48 3.1-3二維蓄熱體暫態熱液動分析之解題流程 48 3.1-4三維蓄熱體穩態熱液動分析之格點測試 48 3.1-5二維蓄熱體暫態熱液動分析之格點測試 49 3.2一維蓄熱體暫態熱液動分析之數值方法 50 3.2-1數值方法 50 3.2-2一維蓄熱體暫態熱液動分析之解題流程 51 3.2-3一維蓄熱體暫態熱液動分析之格點測試 53 第四章、結果與討論 60 4.1三維球狀式蓄熱體穩態熱液動分析 60 4.1-1流場與壓降分析 60 4.1-2熱對流係數分析 62 4.2二維球狀式蓄熱體暫態熱液動分析 64 4.2-1蓄熱體溫度場隨時間變化之微觀分析 64 4.2-2交替時間對蓄熱體熱效率之影響 66 4.3一維蓄熱體暫態熱液動數值分析 68 4.3-1一維蓄熱體微觀分析 68 4.3-2交替時間對三區的蓄熱體熱效率之影響 69 4.3-4加熱爐各區之蓄熱體之熱效率分析 69 第五章、結論 99 第六章、參考文獻 100

    [1] T. Ishii, C. Zhang, and S. Suglyama, “Numerical simulations of highly preheated air combustion in an industrial furnace,” Transactions of the ASME, Vol. 120, pp. 276–284, 1998.
    [2] T. Ishii, C. Zhang, and S. Suglyama, “Effects of NO Models on the Prediction of NO Formation in a Regenerative Furnace”, Transactions of the ASME, Vol. 122, pp. 943–957, 2000.
    [3] N. Stockwell, C. Zhang, T. Ishii, and Y. Hino, “Numerical Simulations of turbulent Non-premixed Combustion in a Regenerative Furnace”, ISIJ International, Vol. 41, pp. 1272–1281, 2001.
    [4] J. P. Ou, A. C. Ma, S. H. Zhan, J. M. Zhou, and Z. Q. Xiao, “Dynamic simulation on effect of flame arrangement on thermal process of regenerative reheating furnace,” J. Cent. South Univ. Technol., 2007.
    [5] J.E. Coppage, and A.L. London, “The Periodic-Flow Regenerator-A Summary Design Theory”, ASME, Vol. 75, pp. 779-787, 1953.
    [6] T.J. Lamberston, “Performance Factors of a Periodic-Flow Heat Exchanger”, ASME, Vol.80, pp. 586-592, 1958.
    [7] O. Bey, and G. Eigenberger, “Fluid through catalyst filled tubes”, Chemical Engineering Sci. 52 , 1365, 1977.
    [8] M. Giese, K. Rottschafer, and D. Vortmeyer, “Measured and modeled superficial flow profiles in packed beds with liquid flow”, AIChE J. 44, 484, 1998.
    [9] H.A. Jackobsen, H. Lindborg, and V. Handeland, “A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors”, Computational Chemical Engineering 26, 333, 2002.
    [10] D.A. Nield and A.V. Kuznestov, “Local thermal non-equilibrium effects in forced convection in a porous medium channel: a conjugate problem”, International Journal of Heat and Mass Transfer Vol.42, pp. 3245-3252, 1999.
    [11] S.A. Khashan, A.M. Al-Amiri and M.A. Al-Nimr, “Assessment of the Local Thermal Non-equilibrium Condition in Developing Forced Convection Flows Through Fluid-Saturated Porous Tubes”, Applied Thermal Engineering, Vol.25, pp.1429-1445, 2005.
    [12] N. Wakao, S. Kaguei, and I.T. Funazkr, “Effect of fluid dispersion coefficient on particle-to-fluid heat transfer coefficients in packed beds”, Chemical Engineering Science, 34, pp. 325~336, 1979.
    [13] M.T. Dalman, J.H. Merkin, and C. McGreavy, “Fluid flow and heat transfer past two spheres in a cylindrical tube”, Computational Fluid 14, pp. 267~281, 1986.
    [14] B. Lloyd, and R. Boehm, “Flow and heat transfer around a linear array of spheres”, Numerical Heat Transfer, Part A 26, pp. 237~252, 1994.
    [15] H.P.A. Calis, J. Nijenhuis, B.C. Paikert, F.M. Dautzenberg , and C.M. van den Bleek, “CFD modeling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing”, Chemical Engineering Science, Vol.56, pp.1713-1720, 2001.
    [16] M. Nijemeisland, and A.G. Dixon, “Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed”, Chemical Engineering Journal, 82, pp. 231–246, 2001.
    [17] C.F. Petre, F. Larachi, I. Iliuta, and B.P.A. Grandjean, “Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling”, Chemical Engineering Sci., 58, 163, 2003.
    [18] J. Tobis, “Modeling of the pressure drop in the packing of complex geometry”, Ind. Eng. Chem. Res., 41, pp. 2252~2259, 2002.
    [19] P. Magnico, “Hydrodynamic and transport properties of packed beds in small tube-to-sphere diameter ratio: pore scale simulation using an Eulerian and a Lagrangian approach”, Chem. Eng. Sci., 58, pp. 5005~5024, 2003.
    [20] S.J.P. Romkes, F.M. Dautzenberg, C.M. van den Bleek, and H.P.A. Calis, “CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio”, Chemical Engineering Journal, 96, pp. 3~13, 2003.
    [21] A. Guardo, M. Coussirat, M.A. Larrayoz, F. Recasens and E. Egusquiza, “Influence of the Turbulence Model in CFD Modeling of Wall-to-Fluid Heat Transfer in Packed Beds”, Chemical Engineering Science, Vol. 60, pp. 1733-1742, 2005.
    [22] J.Y. Jang, and Y.W. Chiu, “3-D transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed”, Applied Thermal Engineering 29, pp.2895~2903, 2009.
    [23] D.S. Noh, S.K. Hong, H.S. Ryou, and S.H. Lee, “An Experimental and Numerical Study on Thermal Performance of a Regenerator System with Ceramic Honeycomb ’’, KSME International Journal, Vol.15, No. 3, pp.357~365, 2001.
    [24] N. Rafidi, and W. Blasiak, “Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners ”, Applied Thermal Engineering, Vol.25, pp. 2966~2982, 2005.
    [25] K. Kang, S.K. Hong, D.S. Noh, and H.S. Ryou, “Heat transfer characteristics of a ceramic honeycomb regenerator for an oxy-fuel combustion furnace”, Applied Thermal Engineering, Vol.70, pp. 494~500, 2014.
    [26] F. Opitz, and P. Treffinger, “Packed bed thermal energy storage model-Generalized approach and experimental validation”, Applied Thermal Engineering 73, pp.245~252, 2014.
    [27] D. Schlipf, P. Schicktanz, H. Maier, and G. Schneider, “Using sand and other small grained”, Energy Procedia 69, pp.1029~1038, 2015.
    [28] I. Ortega, A. Faik, A. Gil, J. Rodriguez-Asequinolaza , and B. D’Aguanno, “Thermo-physical properties of a steel-making by-product to be used as thermal energy storage material in a packed-bed system”, Energy Procedia 69, pp.968~977, 2015.
    [29] M. Cascetta, G. Cau, P. Puddu, and F. Serra, “A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system”, Applied Thermal Engineering 98, pp.1263~1272, 2016.
    [30] B. E. Launder, and D. B. Spalding, “Mathematical models of turbulence,” Academic, London, Chap. 5, pp, 90-100, 1972.
    [31] M. F. Modest, “The weight-sum-of-gray-gases model for arbitrary solution methods in radiative transfer,” J. Heat Transfer 113(3), pp.650-656, 1991.

    下載圖示 校內:2018-07-01公開
    校外:2018-07-01公開
    QR CODE