簡易檢索 / 詳目顯示

研究生: 黃鈺珊
Huang, Yu-Shan
論文名稱: 複合型光生物反應器之系統開發及其在小球藻培養上之應用
Development of a Hybrid Type Photobioreactor for Cultivation of Chorella sp.
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 小球藻複合型光生物反應器二氧化碳利用效率生物質量
外文關鍵詞: Chlorella sp., hybrid type photobioreactor, carbon dioxide efficiency, biomass production
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微藻的生長速率快且可經由光合作用固定大氣中的二氧化碳並轉化生成生物質,是相當具有潛力的生質能源生產者。因此,本研究為提高微藻生物產量及其二氧化碳利用效能,設計複合型光生物反應器以增加碳源質傳效率,並探討最佳的氣體供應條件,再透過模型的建立決定出複合型系統中最佳的操作體積條件。
    本研究在吸收塔與培養槽體積皆為2 L的複合型光生物反應器中,以光強度為600 μmol/m2s、氮源濃度為0.1 g/L的條件進行培養,探討不同的二氧化碳氣體流量及空氣流量(循環流率)之下,小球藻的生長表現。而最佳的氣體供應條件為:2 L/min的空氣流量與20 ml/min的二氧化碳混合之氣體,可得到最佳的產量及二氧化碳利用效率,分別為3.352 g/reactor及2.53 %。
    由於擴大培養槽體積會提高培養系統的光照時間比例,且上述小體積培養之光照時間比例(12 hr/day)偏低,不利於進行模擬及預測,故以培養槽體積擴增為7.5 L之複合系統進行培養,其吸收塔之體積及通氣條件為二氧化碳濃度2 %的混合氣體以2 L/min的流量通入2 L的吸收塔。以Logistic方程式及PFR之原理描述小球藻的生長及在吸收塔中二氧化碳的吸收情形,並以培養槽體積為7.5 L之實驗數據進行擬合。藉由此模型的建立決定出最佳的培養槽體積,並透過實驗驗證而得到判定係數值為0.97。最佳的培養槽體積為26 L,經實際培養得到比生長速率及最終生物產量分別為0.0345 hr-1和30.6 g/reactor,且其碳源利用效率可提升至14 %左右。因此證實複合型光生物反應器可有效提升微藻產量以及二氧化碳利用效能,而模型可有效掌握複合系統中小球藻的生長情形。

    Microalgae have received much attention as renewable energy resources, since the photoautotrophic mechanism can convert the atmospheric carbon dioxide into biomass. In order to harvest microalgae with the high production of biomass and provide high carbon dioxide utilization efficiency (CUE), the hybrid type photobioreactor was developed to improve the carbon dioxide mass transfer efficiency in the cultural system. After finding out the optimal gas supply conditions by experiments, a model was built up to obtain the optimal volume of cultural tank.
    In this study, different aeration rates of carbon dioxide and air were carried out in the hybrid system, which was composed of 2 L absorption tower and 2 L cultural tank under 600 μmol/m2s of light intensity and 0.1 g/L of initial urea concentration. The best condition for obtaining large biomass production and high CUE was aerated with 2 L/min air and 20 ml/min carbon dioxide (2 % CO2), and there were 3.352 g biomass/reactor and 2.53 % of CUE from the batch cultivation.
    It seems that increasing the cultural tank volume without any changes of the conditions in absorption tower can enhance the lighting hours of cultural system. The lighting hours in the hybrid system mentioned above (about 12 hr/day) was too short to use for model, so a 7.5 L-cutural tank of hybrid system, which has 19 hr/day of lighting, was carried out. For knowing the growth kinetics of Chlorella sp. and the consumption of carbon dioxide, Logistic equation and the principle of plug flow reactor (PFR) are considered as the model to approach the dynamics and mechanism. The optimal volume of cultural tank was 26 L, which was determined by model, with 2 L of absorption tower, which is aerated by 2 % CO2, and the biomass production, specific growth rate and CUE are 30.6 g/reactor, 0.0345 hr-1 and about 14 %, respectively. Therefore, the hybrid type photobioreactor is successfully employed for enhancing the production of biomass and carbon dioxide utilization efficiency.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIII 符號 XIV 第一章 緒論 1 1-1 前言 1 1-2 微藻作為生質能源料源的優勢 2 1-3 研究動機與目的 5 第二章 文獻回顧 6 2-1 藻類簡介 6 2-2 微藻生理介紹 8 2-2-1 光合作用 8 2-2-3 影響生長的調控因子 10 2-3 微藻培養介紹 16 2-3-1 培養方式 16 2-3-2 培養系統 17 2-4 二氧化碳吸收裝置介紹 21 2-4-1 二氧化碳傳送之途徑與機制 21 2-4-2 氣體吸收裝置 22 2-4-3 吸收裝置與淺池培養槽的結合 24 第三章 實驗材料與方法 26 3-1 藻種 26 3-2 培養基組成 27 3-2-1 碳源 27 3-2-2 氮源與其他營養成分 27 3-3 培養方法 30 3-3-1 種源保存與繼代培養 30 3-3-2 前培養 30 3-3-3 主培養 31 3-4 實驗儀器與設備 31 3-4-1 複合型光生物反應器之設計 31 3-4-2 培養系統 34 3-4-3 分析系統 34 3-5 實驗分析方法 35 3-5-1 光強度測定 35 3-5-2 微藻濃度分析 35 3-5-3 尿素濃度測定 37 3-5-4 酸鹼值測定 39 3-5-5 液相二氧化碳濃度之定量 39 3-6 複合型光生化反應器之動力學模型 41 3-6-1微藻之生長動力學模型 42 3-6-2二氧化碳吸收及消耗之動力學模型 43 第四章 實驗結果與討論 45 4-1 培養條件之探討 45 4-1-1 二氧化碳通氣量之影響 46 4-1-2空氣通氣量與循環流率之關係 51 4-1-3 空氣通氣量之影響 52 4-1-4 吸收塔與培養槽體積比例之影響 56 4-2 複合型光生物反應器系統之動力學模型建立 60 4-2-1 動力學模型的建立與係數決定 60 4-2-2 模型可信度檢驗 61 4-2-3 產率最佳化之操作體積的模擬與預測 62 4-2-4 產率最佳化之操作體積的實驗驗證 66 第五章 結論與未來展望 68 5-1 結論 68 5-2 未來展望 69 參考文獻 71

    Apt, K. E. a. B., P. W (1999). "Commercial developments in microalgal biotechnology." Journal of Phycology 35(2): 215-226.
    Becker, E. W. (1994). Microalgae: Biotechnology and Microbiology UK, Cambridge University Press.
    Borowitzka, M. A. (1999). "Commercial production of microalgae: Ponds, tanks, tubes and fermenters." Journal of Biotechnology 70(1-3): 313-321.
    Butler, W. R., J. J. Calaman, et al. (1996). "Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle." J. Anim Sci. 74(4): 858-865.
    Chisti, Y. (2007). "Biodiesel from microalgae." Biotechnology Advances 25(3): 294-306.
    David, H. T. (1991). "Effects of inorganic n availability on algal photosynthesis and carbon metabolism." Journal of Phycology 27(1): 14-20.
    Endo, T., U. Schreiber, et al. (1995). "Suppression of Quantum Yield of Photosystem II by Hyperosmotic Stress in Chlamydomonas reinhardtii : Environmental and stress responses." Plant and cell physiology 36(7): 1253-1258
    Hoshida, H., T. Ohira, et al. (2005). "Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations." Journal of Applied Phycology 17(1): 29-34.
    Hotos, G. N. (2003). "Growth, filtration and ingestion rate of the rotifer Brachionus plicatilis fed with large (Asteromonas gracilis) and small (Chlorella sp.) celled algal species." Aquaculture Research 34 (10): 793-802.
    Hu, Q. A. (2004). Environmental effects on cell composition. Handbook of microalgal culture: biotechnology and applied phycology. A. Richmond. UK, Blackwell Publishing: 85-88.
    Ishihara, M., T. Shiroma, et al. (2006). "Purification and characterization of extracellular cysteine protease inhibitor, ECPI-2, from Chlorella sp." Journal of Bioscience and Bioengineering 101(2): 166-171.
    J. R. Welty, C. E. W., R. E. Wilson,et. al. (2000). Fundamentals of Momentum, Heat, and Mass Transfer,4th edition:648-652
    Keiko, Y., T. Mutsumi, et al. (1998). "Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil." Journal of Marine Biotechnology 6(1): 44-48.
    Kjell Inge, R., R. R. Jose, et al. (1994). "Effect of nutrient limitation on fatty acid and lipid content of marine microalgae." Journal of Phycology 30(6): 972-979.
    Lee, Y.-K. (1997). "Commercial production of microalgae in the Asia-Pacific rim." Journal of Applied Phycology 9(5): 403-411.
    Liu, Z.-Y., G.-C. Wang, et al. (2008). "Effect of iron on growth and lipid accumulation in Chlorella vulgaris." Bioresource Technology 99(11): 4717-4722.
    Masojidek, J., Koblizek, M., and Torzillo, G. (2004). Handbook of Microalgal Culture:
    Biotechnology and Applied Phycology, Photosynthesis in Microalgae. Oxford, OX, UK Blackwell Science.
    Mazzuca Sobczuk, T., F. Garcia Camacho, et al. (2000). "Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors." Biotechnol Bioeng 67(4): 465-75.
    Molina Grima, E., E. H. Belarbi, et al. (2003). "Recovery of microalgal biomass and metabolites: process options and economics." Biotechnology Advances 20(7-8): 491-515.
    Molina Grima, E., J. A. Sánchez Pérez, et al. (1994). "Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture." Applied Microbiology and Biotechnology 41(1): 23-27.
    Ogbonna, J. C. and H. Tanaka (2000). "Light requirement and photosynthetic cell cultivation - Development of processes for efficient light utilization in photobioreactors." Journal of Applied Phycology 12(3-5): 207-218.
    Pauline, S., Claire, J.C., Elie, D., and Arsene, I (2006). "Commercial applications of microalgae." Journal of Bioscience and Bioengineering 101(2): 87-96.
    Pulz, O. (2001). "Photobioreactors: production systems for phototrophic microorganisms." Applied Microbiology and Biotechnology 57(3): 287-293.
    Qiang, H., S. Milton, et al. (2008). "Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances." The Plant Journal 54(4): 621-639.
    Rao, A. R., C. Dayananda, et al. (2007). "Effect of salinity on growth of green alga Botryococcus braunii and its constituents." Bioresource Technology 98(3): 560-564.
    Rebecca, M. W. and F. O. David (1980). "Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation." Biotechnology and Bioengineering 22(4): 859-873.
    Renaud, S. M., L.-V. Thinh, et al. (2002). "Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures." Aquaculture 211(1-4): 195-214.
    Renaud, S. M., H. C. Zhou, et al. (1995). "Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO)." Journal of Applied Phycology 7(6): 595-602.
    Richmond, A. (2004). "Principles for attaining maximal microalgal productivity in photobioreactors: an overview." Hydrobiologia 512(1): 33-37.
    Rubio, F. C., F. G. A. Fernandez, et al. (1999). "Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture." Biotechnology and Bioengineering 62(1): 71-86.
    Sergeenko T.V., Muradyan E.A., Pronina N.A., Klyachko-Gurvich G.L.,Mishina I.M.,
    Tsoglin L.N. (2000) The effect of extremely high CO2 concentration on the growth
    and biochemical compositionof microalgae. Russ. J. Plant Physiol. 47: 632–638.
    Suh, I. S. and S. B. Lee (2001). "Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor." Journal of Applied Phycology 13(4): 381-388.
    W. Fresenius, K. E. Q., W. Schneider(Eds.) (1988). Water analysis: A Practical Guide to Physico-Chemical,Chemical and Microbiological Water Examination and Quality Assurance. Berlin,New York Springer - Verlag.
    Watanabe, Y. and H. Saiki (1997). "Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas." Energy Conversion and Management 38: S499-S503.
    Wen, Z. Y. and F. Chen (2003). "Heterotrophic production of eicosapentaenoic acid by microalgae." Biotechnol Adv 21(4): 273-94.
    Xu, X.-Q. and J. Beardall (1997). "Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake." Phytochemistry 45(4): 655-658.
    Yalcin, I., Z. Hicsasmaz, et al. (1994). "Characterization of the Extracellular Polysaccharide from Freshwater Microalgae Chlorella sp." Lebensmittel-Wissenschaft und-Technologie 27(2): 158-165.
    Yu, S., J. S. Hubbard, et al. (1987). "Total lipid production of the green alga Nannochloropsis sp. under different nitrogen regimes." Journal of Phycology 23(s2): 289-296.
    江永棉,王瑋龍和黃淑芳 (1990). 台灣海藻簡介. 台灣省立博物館出版部.
    吳文騰主編 (2003). 生物產業技術概論. 新竹, 國立清華大學出版社.
    黃毓涵 (2009). 小球藻最適化連續式培養之研究. 台灣, 國立成功大學.
    謝誌鴻 (2009). 微藻培養與微藻油脂生產之研究. 台灣, 國立成功大學.
    謝誌鴻、吳文騰 (2009年1月). "微藻—綠色生質能源." 科學發展 433期: 36 ~ 41頁.

    無法下載圖示 校內:2013-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE