簡易檢索 / 詳目顯示

研究生: 蔡秉均
Tsai, Ping-chun
論文名稱: Tb3-xBixFe5O12石榴石之介電與磁性研究
Study on dielectric and magnetic properties of Tb3-xBixFe5O12
指導教授: 齊孝定
Qi, Xiaoding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 72
中文關鍵詞: 铽鐵石榴石介電行為鐵氧體磁性Cole-Cole
外文關鍵詞: Terbium iron garnet, Dielectric behavior, Ferrimagnetism, Cole-Cole
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年發現Tb3Fe5O12於小磁場(1-2 kOe)下可以促發出磁介電性質。一般而言,多鐵性材料必須於大磁場(>1 Tesla)下才具有磁電耦合效應。因此,Tb3Fe5O12的發現提高未來應用的可能性。Tb3Fe5O12屬於稀土鐵石榴石,磁性性質已被廣泛地研究探討,但是研究介電性質的文獻非常稀少。本論文除了探討Tb3Fe5O12介電性質外,並且添加Bi取代Tb研究其對介電與磁性的效應。
      藉由固相反應法來合成Tb3-xBixFe5O12 (x=0.0-1.0),結果顯示燒結溫度與Bi的添加巨大地影響Tb3Fe5O12的密度與介電性質,然而燒結溫度對磁性沒有明顯的改變。
    較高的燒結溫度增加材料密度、介電常數和耗損峰的頻率,但是降低了Cole-Cole方程式中的α參數。在文獻中,Fe2+/Fe3+ 間的躍遷被用來解釋Tb3Fe5O12的介電行為。另一方面,Bi對Tb的取代增加材料密度與躍遷激發能,但是降低了燒結溫度、介電反應與稀釋Tb對於材料磁性的貢獻。Tb3-xBixFe5O12具有兩個介電鬆弛現象,低溫介電行為由Fe2+/Fe3+ 間的躍遷所產生,而中溫介電行為來自於Bi2+/Bi3+間的躍遷。整個研究中,利用Cole-Cole 方程式與Arrhenius定律來分析介電行為。此外,磁性的實驗結果與文獻相符。

    Tb3Fe5O12 showed a large magnetodielectric response at a low field (1-2 kOe). Therefore, it is more promising for practical applications than the multiferroics in which the magnetoelectric coupling only occurred under high field (>1 Tesla). As one of the members of the rare-earth iron garnets, the magnetic properties of Tb3Fe5O12 have been studied extensively, but there is little known about its dielectric properties. In this work, Tb3-xBixFe5O12 (x=0.0-1.0) samples were prepared by the solid-state reaction method at 10001390 °C and their dielectric and magnetic properties were studied in detail. The results revealed that sintering temperature and Bi substitution affected dramatically the density and dielectric behaviors of Tb3Fe5O12, while sintering temperature did not change notably the magnetic properties. Higher sintering temperature resulted in an increase in density, dielectric constant and loss-peak frequency, but a decrease in the α parameter of the Cole-Cole equation. The Fe2+/Fe3+ hopping process was proposed for the observed dielectric behaviors. On the other hand, Bi substitution led to an increase in density and hopping activation energy, but a decrease in sintering temperature, dielectric responses, and the contribution of the Tb3+ magnetic sub-lattice. The intermediate temperature dielectric relaxation may result from the Bi2+/Bi3+ hopping process. The dielectric behaviors were analyzed by using the Cole-Cole method and Arrhenius laws. In addition, magnetic properties were consistent with the reports in the literature.

    摘要 .i ABSTRACT ii 誌謝 iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 Introduction 1 1.1 Technological Aspirations 1 1.2 The Renaissance of Multiferroics and Magnetoelectrics 3 1.3 Future Development Challenge 5 1.4 Organization of The Thesis 7 Chapter 2 Literature Review 8 2.1 Introduction to Garnet 8 2.1.1 Garnet Structure 8 2.1.2 Magnetic Properties 10 2.2 Dielectric Behaviors 11 2.2.1 Literature Review 11 2.2.2 Hopping Polarization 13 2.2.3 Debye and Cole-Cole Equations 16 2.2.4 Arrhenius Law for The Activation Energy 20 Chapter 3 Experiment and Characteristics 21 3.1 Initial Materials 21 3.2 Specimen Preparation 21 3.3 Characterization and Property Measurement 24 3.3.1 X-ray Diffraction (XRD) 24 3.3.2 Density and Relative Density Measurement 25 3.3.3 Scanning Electron Microscopy (SEM) 26 3.3.4 X-ray Photoelectron Spectroscopy (XPS) 27 3.3.5 Vibrating Sample Magnetometer (VSM) 28 3.3.6 Dielectric and Resistivity Measurement 29 Chapter 4 The Effects of Sintering Temperature on Dielectric and Magnetic Properties of Tb3Fe5O12 31 4.1 Phase Identification and Microstructure 31 4.2 Magnetic Properties 34 4.3 Dielectric properties 37 Chapter 5 The Effects of Bi Substitution to Tb on Dielectric and Magnetic Properties of Tb3-xBixFe5O12 46 5.1 Phase Identification and Microstructure 46 5.2 Magnetic Properties 51 5.3 Dielectric properties 54 Chapter 6 Conclusion 67 REFERENCE 68

    [1] N.A. Spaldin, M. Fiebig, Materials science. The renaissance of magnetoelectric multiferroics, Science, 309 (2005) 391-392.
    [2] W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials, Nature, 442 (2006) 759-765.
    [3] L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures, Journal of Physics: Condensed Matter, 20 (2008) 434220.
    [4] The best is yet to come, Nat Mater, 6 (2007) 1-1.
    [5] M. Fiebig, Revival of the magnetoelectric effect, Journal of Physics D: Applied Physics, 38 (2005) R123-R152.
    [6] 齊孝定, 多鐵性(multiferroic)材料的發展及潛在應用, 物理雙月刊, 31 (2009).
    [7] Y. Kohara, Y. Yamasaki, Y. Onose, Y. Tokura, Excess-electron induced polarization and magnetoelectric effect in yttrium iron garnet, Physical Review B, 82 (2010) 104419.
    [8] J. Amighian, A. Hasanpour, M. Mozaffari, The effect of Bi mole ratio on phase formation in BixY3−xFe5O12 nanoparticles, physica status solidi (c), 1 (2004) 1769-1771.
    [9] M. Uemura, T. Yamagishi, S. Ebisu, S. Chikazawa, S. Nagata, A double peak of the coercive force near the compensation temperature in the rare earth iron garnets, TPHM, 88 (2008) 209-228.
    [10] S.d.S. Marins, T. Ogasawara, A.S. Ogasawara, Terbium–yttrium–iron garnet revisited, Journal of Alloys and Compounds, 436 (2007) 415-420.
    [11] J. Su, X. Lu, C. Zhang, J. Zhang, H. Sun, C. Ju, Z. Wang, K. Min, F. Huang, J. Zhu, Study on dielectric and magnetic properties of Ho3Fe5O12 ceramics, Physica B: Condensed Matter, 407 (2012) 485-488.
    [12] I.J. Park, C.S. Kim, Structural and magnetic characteristics of bismuth substituted holmium iron garnet, physica status solidi (b), 244 (2007) 4562-4565.
    [13] T.D. Kang, E. Standard, K.H. Ahn, A.A. Sirenko, G.L. Carr, S. Park, Y.J. Choi, M. Ramazanoglu, V. Kiryukhin, S.W. Cheong, Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet, Physical Review B, 82 (2010) 014414.
    [14] Y.J. Wu, C. Yu, X.M. Chen, J. Li, Magnetodielectric effects of Y3Fe5−xTixO12+x/2 ceramics, Applied Physics Letters, 100 (2012) 052902.
    [15] N. Hur, S. Park, S. Guha, A. Borissov, V. Kiryukhin, S.W. Cheong, Low-field magnetodielectric effect in terbium iron garnets, Applied Physics Letters, 87 (2005) 042901.
    [16] X. Wu, X. Wang, Y. Liu, W. Cai, S. Peng, F. Huang, X. Lu, F. Yan, J. Zhu, Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics, Applied Physics Letters, 95 (2009) 182903.
    [17] Y.J. Wu, C. Yu, X.M. Chen, J. Li, Magnetic and magnetodielectric properties of Bi-substituted yttrium iron garnet ceramics, Journal of Magnetism and Magnetic Materials, 324 (2012) 3334-3337.
    [18] J. Su, X. Lu, J. Zhang, H. Sun, C. Zhang, Z. Jiang, C. Ju, Z. Wang, F. Huang, J. Zhu, The effect of Fe2+ ions on dielectric and magnetic properties of Yb3Fe5O12 ceramics, Journal of Applied Physics, 111 (2012) 014112.
    [19] J.M. Costantini, J.P. Salvetat, F. Brisard, Dielectric and transport properties of magnetic insulators irradiated with GeV heavy ions, Journal of Applied Physics, 82 (1997) 5063-5071.
    [20] V.J. Fratello, S.J. Licht, C.D. Brandle, Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators, Magnetics, IEEE Transactions on, 32 (1996) 4102-4107.
    [21] P. Hansen, K. Witter, W. Tolksdorf, Magnetic and magneto-optical properties of bismuth-substituted gadolinium iron garnet films, Physical Review B, 27 (1983) 4375-4383.
    [22] H. Zhao, J. Zhou, Y. Bai, Z. Gui, L. Li, Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet, Journal of Magnetism and Magnetic Materials, 280 (2004) 208-213.
    [23] Y.J. Wu, Y. Gao, X.M. Chen, Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range, Applied Physics Letters, 91 (2007) 092912.
    [24] J. Su, X. Lu, C. Zhang, J. Zhang, S. Peng, X. Wu, K. Min, F. Huang, J. Zhu, The effect of sintering temperature on magnetic and dielectric properties of Ho3Fe5O12 ceramics, Journal of Materials Science, 46 (2011) 3488-3492.
    [25] Y.J. Wu, Y. Gao, X.M. Chen, S.Y. Wu, Z.C. Xu, Dielectric relaxations in Tb0.91Yb1.38Bi0.71Fe5O12 ceramics, Physics Letters A, 373 (2009) 1089-1092.
    [26] Y.-J. Siao, X. Qi, C.-R. Lin, J.-C.-A. Huang, Dielectric relaxation and magnetic behavior of bismuth-substituted yttrium iron garnet, Journal of Applied Physics, 109 (2011) 07A508.
    [27] Y.-J. Siao, X. Qi, C.-R. Lin, J.-C.-A. Huang, Dielectric and magnetic properties of Y3−xTbxFe5O12 ferrimagnets, Journal of Applied Physics, 111 (2012) 07A521.
    [28] Y.J. Wu, C. Yu, X.M. Chen, J. Li, Effects of Al Substitution on Dielectric Response and Magnetic Behavior of Yttrium Iron Garnet Ceramics, Journal of the American Ceramic Society, 95 (2012) 1671-1675.
    [29] K.C. Kao, Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes, Academic Press, 2004.
    [30] A.K. Jonscher, Universal relaxation law: a sequel to Dielectric relaxation in solids, Chelsea Dielectrics Press, 1996.
    [31] A.K. Jonscher, A new understanding of the dielectric relaxation of solids, Journal of Materials Science, 16 (1981) 2037-2060.
    [32] W. Barsoum, Fundamentals of Ceramics, Institute of Physics Publishing, 2003.
    [33] E.M. Levin, C.L. McDaniel, The System Bi2O,—B2O3, Journal of the American Ceramic Society, 45 (1962) 355-360.
    [34] B.D. Cullity, S.R. Stock, Elements of x-ray diffraction, Prentice Hall, 2001.
    [35] Card International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standard (JCPDS), PDF No. 71-0697 86-0368, 1999.
    [36] D.G. Brandon, W.D. Kaplan, I. Wiley, Microstructural characterization of materials, in, John Wiley, Chichester, England, 2008.
    [37] D. Briggs, P. Seah, Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy, Wiley, 1990.
    [38] L. Rosenberger, R. Baird, E. McCullen, G. Auner, G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surface and Interface Analysis, 40 (2008) 1254-1261.
    [39] L.M. SURHONE, M.T. TENNOE, S.F. HENSSONOW, VIBRATING SAMPLE MAGNETOMETER, Betascript Publishing, 2010.
    [40] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, 2005.
    [41] M. Lahoubi, M. Guillot, A. Marchand, F. Tcheou, E. Roudault, Double umbrella structure in terbium iron garnet, Magnetics, IEEE Transactions on, 20 (1984) 1518-1520.
    [42] H. Young Jun, K. Jun Sig, S. In-Bo, K. Chul Sung, Spin rotation at compensation point studies of Tb3Fe5O12 by Mössbauer spectroscopy, Magnetics, IEEE Transactions on, 40 (2004) 2808-2810.
    [43] A.K. Jonscher, The universal dielectric response and its physical significance, Electrical Insulation, IEEE Transactions on, 27 (1992) 407-423.
    [44] C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3, Physical Review B, 62 (2000) 228-236.
    [45] I.J. Park, C.S. Kim, Effects of bismuth substitution on Tb3-xBixFe5O12, Journal of Applied Physics, 101 (2007) 09M512-513.
    [46] G. Bordin, G. Buttino, A. Cecchetti, M. Poppi, Temperature dependence of magnetic properties and phase transitions in a soft magnetic Co-based nanostructured alloy, Journal of Physics D: Applied Physics, 32 (1999) 1795.
    [47] I. Park, K. Kang, C. Kim, Temperature Dependent Magnetic Properties of Bismuth Substituted Terbium Iron Garnets, in: Magnetics Conference, 2006. INTERMAG 2006. IEEE International, 2006, pp. 1000-1000.
    [48] I.J. Park, C.S. Kim, Effects of bismuth substitution on Tb3-xBixFe5O12, Journal of Applied Physics, 101 (2007) 09M512-509M512-513.
    [49] K.S. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, Journal of Chemical Physics, 9 (1941) 341.

    無法下載圖示 校內:2018-01-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE