簡易檢索 / 詳目顯示

研究生: 鄭舜營
Jheng, Shun-Ying
論文名稱: 溶膠凝膠法製備氧化鈦薄膜之微結構與性質研究
A study on microstructure and properties of TiOx thin film by sol-gel process
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 氧化鈦薄膜溶膠凝膠法
外文關鍵詞: titanium oxide thin films, sol-gel process
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用溶膠凝膠法來製備二氧化鈦薄膜,改變溶液比例參數然後利用旋轉塗佈法將溶液塗佈在矽基板上,並且利用二氧化碳雷射0.5 W、1.5 W和3 W這三種不同雷射功率對氧化鈦薄膜進行退火改質。
    結果分析方面,分別使用低掠角X光繞射儀(Grazing incidence X-ray diffraction, GIXRD)、掃描式電子顯微鏡(Scanning electron microscopy, SEM)、傅立葉轉換紅外線分光光譜儀(Fourier transform infrared spectroscopy, FTIR)和光激發螢光光譜(Photoluminescence, PL)對初鍍膜以及退火後的氧化鈦薄膜的表面形貌、材料結構、鍵結含量和發光行為進行分析研究。
    所有初鍍膜的氧化鈦薄膜在經過GIXRD的量測之後可以確定所有薄膜在退火前皆為非晶結構。而在經過雷射退火之後,只有異丙氧鈦莫爾濃度加倍(C組)的氧化鈦薄膜在經過雷射功率0.5 W的雷射退火後產生了Anatase相,而所有的氧化鈦薄膜在經過雷射功率1.5 W和3.0 W的退火加工後皆呈現了Rutile相結構。
    未退火的氧化鈦薄膜在PL光譜中在550 nm的位置顯示出明顯的波峰訊號,而經過退火的氧化鈦薄膜生成Rutile(1 1 0)結晶相後在433 nm處發現了Rutile相氧缺陷所造成的深層發光,而隨著溫度的升高,Rutile(1 0 1)結晶相也跟著增強,Rutile相氧缺陷的PL光譜訊號波峰位置跟著紅移且訊號增強。
    我們利用Ansys這套模擬軟體模擬氧化鈦薄膜在經過二氧化碳雷射退火改質時氧化鈦薄膜的溫度變化與實驗結果比對做驗證。

    Titanium oxide (TiOx) thin films that were fabricated by sol-gel process with varies solution ratios parameters were deposited on the Si substrate by spin coated and then annealed by CO2 laser annealing with three different power:0.5 W, 1.5 W and 3.0 W in atmosphere.
    The structure, morphology, bonding and luminescence behaviors of the as-deposited and annealed TiOx thin films were analyzed by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR) and photoluminescence (PL) spectroscopy, respectively.
    The as-deposited TiOx thin films were amorphous from GIXRD. Only the TiOx thin films that have double molar ratio of TTIP had distinct crystalline peak of Anatase phase after laser annealing by power 0.5 W. And all of TiOx thin films had distinct crystalline peak of Rutile phase after laser annealing by power 1.5 W and 3.0 W.
    The as-deposited TiOx thin films had distinct peak at 550 nm in PL spectra. Annealing TiOx thin films that have Rutile (1 1 0) phase was found a peak at 433 nm which were attributed to deep-level emissions of oxygen vacancies in the Rutile phase. The increasingly intensity and red-shift of PL peak that was made by oxygen vacancies in Rutile phase was concerned with temperature rising making the Rutile (1 0 1) peak intensity increasing.
    We used the simulation software: Ansys to simulate TiOx thin films annealing temperature by CO2 laser, and explain the experiment data.

    摘要 I Abstract III 致謝 IV 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 本文架構 4 第二章 文獻回顧與理論基礎 5 2-1 二氧化鈦材料簡介與研究發展 5 2-1-1 二氧化鈦基本性質 5 2-1-2 二氧化鈦研究發展 8 2-2二氧化鈦薄膜製程文獻回顧 11 2-2-1 物理氣相沉積法 (PVD) 11 2-2-2化學氣相沈積法 (CVD) 11 2-2-3 液相沉積法 (LPD) 12 2-2-4 溶膠凝膠法(Sol-gel process) 13 2-3 二氧化碳雷射退火退火文獻回顧 16 2-3-1 二氧化碳雷射特性 16 2-3-2 二氧化碳雷射退火之應用 17 第三章 實驗方法與步驟 19 3-1 反應基本原理 19 3-2 實驗流程 20 3-3 實驗材料 23 3-4 實驗儀器與參數 24 3-4-1 CO2 雷射機台 24 3-4-2 旋轉塗佈機 (Spin coater) 26 3-4-3低掠角X光繞射 (Glancing Incident Angle X-Ray Diffraction) 27 3-4-4 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 29 3-4-5 傅立葉轉換紅外線分光光譜儀(Fourier Transform Infrared spectroscopy) 31 3-4-6 光激發螢光光譜 (photoluminescence spectroscopy) 33 3-4-7 程式控制高溫爐 34 3-5 模擬條件 35 第四章 實驗結果與討論 37 4-1 初鍍膜之氧化鈦薄膜性質 37 4-1-1 薄膜厚度 37 4-1-2 GIXRD微結構分析 39 4-1-3 SEM表面形貌分析 40 4-1-4 FTIR 紅外光譜鍵結分析 44 4-1-5 Photoluminescence 光激發螢光性質 46 4-2 雷射退火改質後之氧化鈦薄膜性質 48 4-2-1 GIXRD 微結構分析 48 4-2-2 SEM表面形貌分析 56 4-2-3 FTIR 紅外光譜鍵結分析 61 4-2-4 Photoluminescence 光激發螢光性質 64 4-3 雷射退火模擬 69 第五章 結論與未來展望 71 5-1 結論 71 5-2 本文貢獻 73 5-3 未來展望 74 參考文獻 75 自述 79

    1. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor”, Nature 238, pp. 37-38 (1972).
    2. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, pp. 737 (1991).
    3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science 293, pp. 269 (2001).
    4. M.I. Litter, “Heterogeneous photocatalysis Transition metal ions in photocatalytic systems”, Applied Catalysis B 23, pp. 89-114 (1999).
    5. H. Kishimoto and K. Takahama, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, Journal of Materials Chemistry 8, pp. 2019–2024 (1998).
    6. H. Yu and S.C. Lee, “Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers”, Journal of Molecular Catalysis A: Chemical 246, pp. 206–211 (2006).
    7. P. Zeman and S. Takabayashi, “Nano-scaled photocatalytic TiO2 thin films prepared by magnetron Sputtering”, Thin Solid Films 433, pp. 57–62 (2003).
    8. V. Rico, P. Romero and J.L. Hueso, “Wetting angles and photocatalytic activities of illuminated TiO2 thin films”, Catalysis Today 143, pp. 347–354 (2009).
    9. D. Byun and Y. Jin, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials B 73, pp. 199–206 (2000).
    10. T. Okumura, Y. Kinoshita, H. Uchiyama and H. Imai, “Photoluminescence of nitrogen-doped anatase”, Materials Chemistry and Physics 111, pp. 486–490 (2008).
    11. L.Q. Jing, X.J. Sun and B.F. Xin, “The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity”, Journal of Solid State Chemistry 177, pp. 3375–3382 (2004).
    12. P. Kofstad, “Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides”, John Wiley & Sons New York (1972).
    13. U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports 48, pp. 53 (2003).
    14. L. Kavan, M. Gra1tzel, S.E. Gilbert, C. Klemenz, and H.J. Scheel, “Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase”, Journal of American Chemical Society 118, pp. 6716–6723 (1996).
    15. D.R. Coronado and G.R. Gattorno, “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile”, Nanotechnology 19 145605, pp. 10 (2008).
    16. M. Gr¨azel, “Heterogeneous Photochemical Electron Transfer”, XRC Press (1989).
    17. H. Tang, H. Berger, P.E. Schmid and F. Levy, “Photoluminescence in TiO2 anatase single crystals”, Solid State Communications 87 9, pp. 847–850 (1993).
    18. K. Fujihara, S. Izumi, T. Ohno and M. Matsumura, “Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions”, Journal of Photochemistry and Photobiology A: Chemistry 132, pp. 99–104 (2000).
    19. A.J. Bard, “Photoelectrochemistry”, Science 207, pp. 139 (1980).
    20. M. Kitano, M. Matsuoka, M. Ueshima and M. Anpo, “Recent developments in titanium oxide-based photocatalysts”, Applied Catalysis A: General 325, pp. 1–14 (2007).
    21. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura and M. Shimohigoshi, T. Watanabe, “Light-induced amphiphilic surfaces”, Nature 431, pp. 388 (1997).
    22. M. Takeuchi, S. Dohshi, T. Eura and M. Anpo, “Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface”, Journal of Physical Chemistry B 107, pp. 14278 (2003).
    23. G.S. Vicente, A. Morales and M.T. Gutie´rrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon”, Thin Solid Films 403–404, pp. 335–338 (2002).
    24. Z.M. Qi, K. Itoh, M. Murabayash and C.R. Lavers, “Characterization and application of a channel-planar composite waveguide”, Optical Letters 25 19 (2000).
    25. K. Zakrzewska, “Gas sensing mechanism of TiO2-based thin films”, Vacuum 74 2, pp. 335 (2004).
    26. C.J. Brinker and G.W. Scherer, “Sol Gel Science”, Academic Press (1990).
    27. H.D. Nam, B.H. Lee, S.J. Kim, C.H. Jung, J.H. Lee and S. Park, “Preparation of Ultrafine Crystalline TiO2 Powders from Aqueous TiCl4 Solution by Precipitation”, Japan Journal of Applied Physics 37, pp. 4603-4608 (1998).
    28. D.M. Mattox, “Sol-gel derived, air-baked indium and tin oxide-films”, Thin Solid Films 204, pp. 25 (1991).
    29. B.E. Yoldas, “Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters”, Journal of Materials Science 21, pp. 1087-1092 (1986).
    30. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, “Microstructure and crystallization behaviour of TiO2 Precursor by the sol-gel method using metal alkoxide”, Journal of Materials Science 29, pp. 1617-1622 (1984).
    31. F. Cot , A. Larbot, G. Nabias and L. Cot, “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder’’, Journal of the European Ceramic Society 18, pp. 2175-2181 (1998).
    32. G. Chryssolouris, “Laser Machining Theory and Practice”, pp. 20-31 (1990).
    33. 丁勝懋, “雷射工程導論”, 中央圖書出版社 民國82年
    34. 林三寶, “雷射原理與應用”, 全華科技圖書 民國80年
    35. 高堅志, “實用雷射技術”, 文笙書局 民國81年
    36. 馬英俊, “雷射基本原理及應用”, 徐氏基金會 民國80年
    37. Y. Matsui, M. Okuyama, N. Fujita and Y. Hamakawa, “Laser annealing to produce ferroelectric-phase PbTiO3 thin films”, Journal of Applied Physics 52(8), pp. 5107-5111 (1981).
    38. P. Heng and K.S. Hwan, “Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics”, Applied Physics Letters 94 071117 (2009).
    39. S.G. Choi, T.J. Ha and B.G. Yu, “Application of mesoporous TiO2 as a thermal isolation layer for infrared sensors”, Thin Solid Films 516, pp. 212–215 (2007).
    40. B. Liu and X. Zhao, “The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method”, Materials Science and Engineering B 134, pp. 27–31 (2006).
    41. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. DiValentin and G. Pacchioni, “Origin of photoactivity of nitrogen-doped titanium dioxide under visible light”, Journal of American Chemical Society 128, pp. 15666–15671 (2006).
    42. M.A. Henderson, W.S. Epling, C.H.F. Peden and C.L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(1 1 0)”, Journal of Physical Chemistry B 107, pp. 534–545 (2003).
    43. Y. Zhao, C. Li and X. Liu, “Synthesis and optical properties of TiO2 nanoparticles”, Materials Letters 61, pp. 79–83 (2007).
    44. L. Zhao, M. Han and J. Lian, “Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition”, Thin Solid Films 516, pp. 3394–3398 (2008).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE