| 研究生: |
李家文 Lee, Chia-Wen |
|---|---|
| 論文名稱: |
H-ZSM5 型沸石觸媒於催化高酸價大豆油酯化反應之研究 Study on Catalyzed Esterification of High-Acid Soybean Oil with Zeolite H-ZSM5 |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 沸石 、生質柴油 、游離脂肪酸 、酯化 、兩階段轉酯化 |
| 外文關鍵詞: | Zeolite, biodiesel, free fatty acids (FFAs), esterification, two-stage transesterification |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生質柴油是對環境友善且環保的再生能源,常見方法是將植物油、動物油脂或廢油與醇類進行轉酯化反應產出生質柴油,轉酯化反應慢,所以會添加觸媒增加反應並提高產率,工業上常用鹼性觸媒催化轉酯化反應,但其缺點是對油料要求較高,若含有過量的游離脂肪酸,會導致皂化反應發生,降低生質柴油產率並使得後續分離純化困難,因此在轉酯化反應前必須先消除游離脂肪酸才能抑制皂化反應發生。
本研究以高酸價大豆油模擬油料中含過量的游離脂肪酸透過兩階段轉酯化反應來解決此問題,第一階段利用酸觸媒來將油料中的游離脂肪酸酯化,第二階段再以鹼觸媒來進行轉酯化反應生成生質柴油,都使用固相觸媒進行反應,因其容易分離且方便回收再使用。而實驗以H-ZSM5沸石催化酯化反應為主軸,利用高酸價大豆油與過量的甲醇下進行反應,降低油酸含量,探討觸媒使用量與反應溫度對酯化反應的影響,找到合適的反應條件,並進行觸媒耐用性測試及利用XRD、SEM、FTIR、BET、NH3-TPD分析觸媒。
實驗結果顯示在油 : 觸媒 : 油酸 : 甲醇重量比= 1: 0.5: 0.05: 20及溫度60C情況下反應2小時將油酸含量從5.4wt%降至1.5wt%,而耐用性測試固定反應4小時,在第二次反應能將油酸含量降至2wt%左右,最後在兩階段轉酯化反應得部分,原料為油酸含量為5.4wt%的大豆油,以4小時酯化將油酸含量降至1.2wt%,再進行2小時轉酯化,產率可達90%,可應用在高酸價的油料中。
In this study, as-synthesized zeolite H-ZSM5 catalysts were chosen to catalyze the esterification of oleic acids spiked in soybean oil or free fatty acids (FFAs) in waste cooking oil. Zeolite H-ZSM5 was synthesized via hydrothermal processes by using fumed silica as a raw material with an addition of proper aluminum hydroxide, ammonium fluoride and tetrapropylammonium bromide as a templating agent at 170C for 1 day. It was characterized with XRD, SEM, BET, FTIR and TPD. The amount of FFAs existing in oil was successfully reduced below to 2 wt% in 2h at 60C from ca. 6 wt% initially present under proper reaction conditions, after which the transesterification can procced with base zeolite catalysts. Besides, the durability test for H-ZSM5 in esterification reaction was conducted. It was revealed that catalysts became inactive after 7th cycle in which its acid strength and quantity decreased significantly according to the NH3-TPD analysis. A two-stage process was devised to facilitate the production of biodiesel from high acid soybean oil or waste cooking oil, in which the yield could achieve above 80% under appropriate conditions.
Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K. Microalgae as a sustainable energy source for biodiesel production: A review. Renew Sust Energ Rev, 15, 584-593 (2011)
Aiello, R., Crea, F., Nigro, E., Testa, F., Mostowicz, R., Fonseca, A., Nagy, J.B. The influence of alkali cations on the synthesis of ZSM-5 in fluoride medium. Microporous and Mesoporous Materials, 28, 241-259 (1998)
ASTM D5559-95. Standard Test Method for Determination of Acidity as Free Fatty Acids/Acid Number in the Absence of Ammonium or Triethanolamine Soaps in Sulfonated and Sulfated Oils. (2011)
ASTM D6584-13. Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. (2014)
Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16, 2070-2093 (2012)
Bail, A., Santos V.C., Freitas, M.R., Ramos, L.P., Schreiner, W.H., Ricci, G.P., Ciuffi K. J., Nakagaki S. Investigation of a molybdenum-containing silica catalyst synthesized by the sol–gel process in heterogeneous catalytic esterification reactions using methanol and ethanol. Applied Catalysis B: Environmental, 130-131, 314-324 (2013)
Barrer, R.M. Hydrothermal chemistry of zeolite. Academic Press (1982)
Berrious M., Siles J., Martin A. A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil, Fuel, 86, 2639-2644 (2007)
Borges, M.E., Diaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renewable and Sustainable Energy Reviews, 16, 2839-2849 (2012)
Breck, D.W. Zeolite molecular sieves: structure, chemistry, and use, Wiley (1984)
Chew T.L., Bhatia S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresource Technology, 99, 7911-7922 (2008)
Chhetri, A.B., Watts, K.C., Islam, M.R. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energy, 1, 3-18 (2008)
Chung, K.H., Chung, D.R., Park, B.G. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresource Technology, 99, 7438-7443 (2008)
Csicsery, S.M. Shape-selective catalysis in zeolites. Zeolite, 4, 202-213 (1984)
Darnoko, D., Cheryan, M. Kinetics of palm oil transesterification in a batch reactor. Journal of the American Oil Chemists Society, 77, 1263-1267 (2000)
Demirbas, M.F. Pyrolysis of vegetable oils and animal fats for the production of renewable fuels. Energy Education Science and Technology, 22, 59-67 (2008)
Felizardo, P., Neiva Correia, M.J., Raposo, I., Mendes J.F., Berkemeier, R., Bordado, J.M. Production of biodiesel from waste frying oils. Waste Management, 26, 487-494 (2006)
Freedman, B., Pryde, E.H., Mounts, T.L. Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc, 61, 1638-1643 (1984)
Gerpen, J.V. Biodiesel processing and production. Fuel Processing Technology, 86, 1097-1107 (2005)
Guo, M., Song, W., Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712-725, (2015)
Intarapong, P., Iangthanarat, S., Phanthong, P., Luengnaruemitchai, A., Jai-In, S. Activity and basic properties of KOH/mordenite for transesterification of palm oil. Journal of Energy Chemistry, 22, 690-700 (2013)
Jain, S., Sharma, M.P. Prospects of biodiesel from Jatropha in India: A review. Renewable Sustainable Energy Reviews, 14, 763-771 (2010)
Kiss, A.A., Omota, F., Dimian, A.C., Rothenberg, G. The heterogeneous advantage: biodiesel by catalytic reactive distillation, Topics in Catalysis, 40, 1-4 (2006)
Lee, K., Oishi, S., Igarashi, H., Misono, M. Acidic cesium salts of molybdovanadophosphoric acids as efficient catalysts for oxidative dehydrogenation of isobutyric acid. Catalysis Today, 33, 183-189 (1997)
Lopez, D.E., Goodwin, J.G. Jr., Bruce, D.A., Lotero, E. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General, 295, 97-105 (2005)
Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. Jr. Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. Journal of Catalysis, 247, 43-50 (2007)
Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 44, 5353-5363 (2005)
Louis, B., Kiwi-Minsker, L. Synthesis of ZSM-5 zeolite in fluoride media: an innovative approach to tailor both crystal size and acidity. Microporous and Mesoporous Materials, 74, 171-181 (2004)
Ma, F., Hanna, M.A. Biodiesel production: a review. Bioresource technology, 70, 1-15 (1999)
Mandolesi de Araujuo, C.D., Cristina de Andrade, C., Souza e Silva, E.D., Antonio Dupas, F. Biodiesel production from used cooking oil: A review. Renewable and Sustain Energy Reviews, 27, 445-452 (2013)
Matsuhashi, H., Miyazaki, H., Kawamura, Y., Nakamura, H., Arata, K. Preparation of a Solid Superacid of Sulfated Tin Oxide with Acidity Higher Than That of Sulfated Zirconia and Its Applications to Aldol Condensation and Benzoylation. Chemistry of Materials, 13, 3038-3042 (2001)
McBain, J.W. The Sorption of Gases and Vapours by Solids: George Rutledge and Sons Ltd (1932)
Moreno-Pirajan, J.C., Garcia-Cuello, V.S., Giraldo, L. Synthesis of HMOR and HZSM-5 and their Behaviour in the Catalytic Conversion of Methanol to Propylene (MTP). Journal of Thermodynamics & Catalysis, 1:101 (2010)
Narkhede, N., Patel, A. Biodiesel production by esterification of oleic acid and transesterification of soybean oil using solid acid comprising 12-tungstosilic acid and Zeolite H beta. Industrial & Engineering Chemistry Research, 52, 13637-13644 (2013)
Niwa, M., Katada, N., Okumura, K. Characterization and Design of Zeolite Catalysts.pdf: Springer (2010)
Perez-Pariente, J., Diaz, I., Mohino, F., Sastre, E. Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts. Applied Catalysis A: General, 254, 173-188 (2003)
Pramanik, K. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy. 28, 239-248 (2003).
Pryde, E.H. Vegetable-oils as diesel fuels – overview. Journal of the American Oil Chemists Society, 60, 1557-1558 (1983)
Rouquerol, J., Llewellyn, P., Rouquerol, F. Is the BET equation applicable to microporous adsorbents? Studies in surface science and catalysis, 160, 49-56 (2007)
Sarin, A., Biodiesel: Production and Properties. Royal Society of Chemistry, (2012)
Schuchardt, U., Sercheli, R., Vargas, R.M. Transesterification of vegetable oils: a review. J Braz Chem Soc, 9, 199-210 (1998)
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H. Diesel fuel from thermal-decomposition of soybean oil. J Am Oil Chem Soc, 65, 1781-1786 (1988)
Sendzikiene, E., Makareviciene, V., Janulis, P., Kitrys, S. Kinetics of free fatty acids esterification with methanol in the production of biodiesel fuel, European Journal of Lipid Science and Technology, 106, 831-836 (2004)
Shahid, E.M., Jamal, Y. Production of biodiesel: A technical review. Renew Sust Energ Rev, 15, 4732-4745 (2011)
Sharma, Y.C., Singh, B. Development of biodiesel: Current scenario. Renew Sust Energ Rev, 13, 1646-1651 (2009)
Sharma, Y.C., Singh, B., Korstad, J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels, Bioproducts and Biorefining, 5, 69-92 (2011)
Silitonga, A.S., Atabani, A.E., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., Mekhilef, S. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews, 15, 3733-3756 (2011)
Singaram, L. Biodiesel: An eco-friendly alternative for the future - a review. Thermal Science, 13, 185-199 (2009)
Singh, S.P., Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14, 200-216 (2010)
Suppes, G.J., Dasari, M.A., Doskocil, E.J., Mankidy P.J., Goff, M.J. Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General, 257, 213-223 (2004)
Talebian-Kiakalaieh, A., Saidina Amin, N., Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710 (2013)
Thuadaij, P., Nuntiya, A. Effect of thee SiO2/Al2O3 ratio on the synthesis of Na-x zeolite from Mae Moh fly ash. ScienceAsia, 38, 295 (2012)
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S., Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252, 107-112 (2006)
Weitkamp, J. Zeolite and catalysis. Solid State Ionics, 131, 175-188 (2000)
Zhang, L., Liu, S. Xie, S., Xu, L. Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous and Mesoporous Materials, 147, 117-126 (2012)
Ziejewski, M., Goettler, H., Pratt, G. Comparative analysis of the long-term performance of a diesel engine on vegetable oil based alternative fuels. Society of Automotive Engineers, (1986)
宋勇徵. 生質柴油國外發展演進. 台肥季刊, (2006)
英國石油公司. BP Statistical Review of World Energy, June 2016. (2016)
陳祺凡. ANA型沸石觸媒催化大豆油轉酯化反應之研究 (2015)
詹逸涵. Amberlite IR-120 陽離子交換樹脂於游離脂肪酸甲酯化之研究 (2011)
蔡政鴻, 陳惠芬. 礦物界的環保明星:沸石. 台灣博物季刊, 100, 68-69 (2008)
蔡詩珊. 淺談生質能. 綠基會通訊, (2008)
盧文章. 生質柴油發展之契機與挑戰: 中華生質能源學會 (2006)
霍俊文. 以硫酸處理之二氧化鋯觸媒對於游離脂肪酸甲酯化反應之研究 (2010)
校內:2021-08-01公開