| 研究生: |
楊俊常 Yang, Martyr |
|---|---|
| 論文名稱: |
以小鼠模式探討登革病毒一致性外膜蛋白第三結構域與去除C端非結構性蛋白1提供之保護效果 Studies on the protective effects of combined dengue virus consensus envelope protein domain III and delta C nonstructural protein 1 in the mouse model |
| 指導教授: |
林以行
Lin, Yee-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 登革病毒 、非結構性蛋白1 、一致性膜套蛋白區塊三 |
| 外文關鍵詞: | dengue virus, nonstructural protein 1, consensus envelope protein domain III |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒(DENV)是一種正股的單鏈RNA病毒,每年感染約3.9億人。由於與宿主自身抗原的分子相似,登革病毒非結構蛋白1(NS1)的C-末端區域含有與血小板和內皮細胞交叉反應的抗原決定位。為了考量疫苗開發的安全性,我們修改了NS1蛋白的C-末端區域(271-352氨基酸),以產生兩種蛋白疫苗,即ΔC NS1和DJ NS1。以被動免疫方式將抗ΔC NS1和抗DJ NS1抗體注入小鼠體内可減少登革病毒引起的延長出血時間和登革病毒非結構蛋白三(NS3)抗原的表達。抗ΔC NS1和抗DJ NS1抗體均可通過抗體-補體介導的方式來破壞被登革病毒感染的細胞。另外,一致性外膜蛋白第三結構(cEDIII)所誘導出的抗體具有對四種血清型登革病毒中和的能力。為了開發能夠誘導具有中和活性和抗體-補體介導將細胞溶解功能的抗體的疫苗,我們經由融合cEDIII和ΔC NS1開發了重組蛋白。先前的研究顯示,cEDIII-ΔC NS1蛋白在小鼠中不會引起急性毒性或長期出血。接著我們利用奈米聚合物或明礬作為佐劑混合的cEDIII-ΔC NS1蛋白免疫小鼠。在第三次免疫後產生了對cEDIII和ΔC NS1的高抗體反應。通過溶斑減少試驗法測定,從cEDIII-ΔC NS1蛋白所免疫的小鼠收集的血清可中和四種血清型的登革病毒。此外,cEDIII-ΔC NS1血清對由四種不同血清型登革病毒感染的HMEC-1細胞產生補體介導的細胞溶解。cEDIII-ΔC NS1蛋白的預注射減少了因登革病毒引起小鼠尾巴延長出血時間。此外,cEDIII-ΔC NS1血清可防止被登革病毒感染的仔鼠之體重減輕、減少神經病理學症狀與提高存活率。總體來說,cEDIII-ΔC NS1蛋白是提供防禦登革病毒感染有潛力的候選疫苗。
Dengue virus (DENV) is a positive-sense, single-stranded RNA virus of which infects about 390 million people per year. Based on sequence homology analysis, the C-terminal region of DENV nonstructural protein 1 (NS1) contains cross-reactive epitopes with platelets and endothelial cells due to a molecular mimicry with host self-antigens. For safety in vaccine development, we modified the C-terminal region (271-352 amino acids) of NS1 protein to produce two types of vaccine candidates, ΔC NS1 and DJ NS1. Passive immunization with anti-ΔC NS1 and anti-DJ NS1 antibodies reduced DENV-induced prolonged bleeding time, hemorrhage, and DENV NS3 expression. Both anti-ΔC NS1 and anti-DJ NS1 antibodies destroy DENV-infected cells through antibody-complement mediated cytolysis. In addition, the antibodies against consensus envelope protein domain III (cEDIII), of which the amino acid sequences are consensus among four serotypes, possessed neutralizing activity against all the four serotypes of DENV. In order to develop a vaccine candidate that can induce antibodies with both neutralizing activity and antibody-complement mediated cytolysis function, we therefore developed a recombinant protein by fusing cEDIII and ΔC NS1. Previous study showed that the cEDIII-ΔC NS1 protein did not cause acute toxicity or prolonged bleeding in mice. Then, we immunized mice with cEDIII-ΔC NS1 protein mixed with polymer-based nanocomplexes or alum as adjuvant. A high antibody response specific to cEDIII and ΔC NS1 was produced after third immunization. The sera collected from cEDIII-ΔC NS1-immunized mice neutralized 4 serotypes of DENV as determined by plaque neutralization assay. Moreover, the cEDIII-ΔC NS1 serum caused complement-mediated cytolysis on HMEC-1 cells infected by four different serotypes of DENV. The pretreatment of cEDIII-ΔC NS1 protein reduced DENV-induced mouse-tail prolonged bleeding time. Furthermore, cEDIII-ΔC NS1 serum can prevent weight loss, reduce neuropathological symptoms and increase survival rate of DENV-infected suckling mice. Taken together, the cEDIII-ΔC NS1 protein is a potential candidate to provide protection against DENV infection.
Adikari, T. N., Gomes, L., Wickramasinghe, N., Salimi, M., Wijesiriwardana, N., Kamaladasa, A., . . . Malavige, G. N. (2016). Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol, 184(1), 90-100.
Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., . . . Smith, J. L. (2014). Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 343(6173), 881-885.
Alen, M. M., & Schols, D. (2012). Dengue virus entry as target for antiviral therapy. J Trop Med, 2012, 628475.
Amorim, J. H., Alves, R. P., Boscardin, S. B., & Ferreira, L. C. (2014). The dengue virus non-structural 1 protein: risks and benefits. Virus Res, 181, 53-60.
Anderson, R., Wang, S., Osiowy, C., & Issekutz, A. C. (1997). Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol, 71(6), 4226-4232.
Arora, U., Tyagi, P., Swaminathan, S., & Khanna, N. (2013). Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine, 31(6), 873-878.
Avirutnan, P., Fuchs, A., Hauhart, R. E., Somnuke, P., Youn, S., Diamond, M. S., & Atkinson, J. P. (2010). Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med, 207(4), 793-806.
Avirutnan, P., Malasit, P., Seliger, B., Bhakdi, S., & Husmann, M. (1998). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol, 161(11), 6338-6346.
Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., . . . Malasit, P. (2006). Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis, 193(8), 1078-1088.
Back, A. T., & Lundkvist, A. (2013). Dengue viruses - an overview. Infect Ecol Epidemiol, doi: 10.3402/iee.v3i0.19839.
Beltramello, M., Williams, K. L., Simmons, C. P., Macagno, A., Simonelli, L., Quyen, N. T., . . . Sallusto, F. (2010). The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe, 8(3), 271-283.
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., . . . Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507.
Brown, M. G., Hermann, L. L., Issekutz, A. C., Marshall, J. S., Rowter, D., Al-Afif, A., & Anderson, R. (2011). Dengue virus infection of mast cells triggers endothelial cell activation. J Virol, 85(2), 1145-1150.
Capeding, M. R., Tran, N. H., Hadinegoro, S. R., Ismail, H. I., Chotpitayasunondh, T., Chua, M. N., . . . Bouckenooghe, A. (2014). Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet, 384(9951), 1358-1365.
Chan, K. R., Wang, X., & Saron, W. A. (2016). Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity. Nat Microbiol, 19:16164.
Chaturvedi, U. C., Dhawan, R., Khanna, M., & Mathur, A. (1991). Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol, 72 ( Pt 4), 859-866.
Chen, C. Y. (2014). Studies on the protective effects of chimeric dengue virus nonstructural protein 1 with polymeric nanocomplexes-based adjuvant in the mouse model. (Master thesis of National Cheng Kung University)
Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol, 81(11), 5518-5526.
Chen, H. H., Chen, C. C., Lin, Y. S., Chang, P. C., Lu, Z. Y., Lin, C. F., . . . Chang, C. P. (2017). AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78. Antiviral Res, 142, 158-168.
Chen, H. R., Chuang, Y. C., Lin, Y. S., Liu, H. S., Liu, C. C., Perng, G. C., & Yeh, T. M. (2016). Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl Trop Dis, 10(7):e0004828.
Chen, H. W., Liu, S. J., Li, Y. S., Liu, H. H., Tsai, J. P., Chiang, C. Y., . . . Pan, C. H. (2013). A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol, 158(7), 1523-1531.
Chen, M. C., Lin, C. F., Lei, H. Y., Lin, S. C., Liu, H. S., Yeh, T. M., . . . Lin, Y. S. (2009). Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J Immunol, 183(3), 1797-1803.
Cheng, H. J., Lin, C. F., Lei, H. Y., Liu, H. S., Yeh, T. M., Luo, Y. H., & Lin, Y. S. (2009). Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies. Exp Biol Med (Maywood), 234(1), 63-73.
Chiang, C. Y., Huang, M. H., Hsieh, C. H., Chen, M. Y., Liu, H. H., Tsai, J. P., . . . Chen, H. W. (2012). Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses. PLoS Negl Trop Dis, 6(5), e1645.
Chiang, C. Y., Liu, S. J., Tsai, J. P., Li, Y. S., Chen, M. Y., Liu, H. H., . . . Chen, H. W. (2011). A novel single-dose dengue subunit vaccine induces memory immune responses. PLoS One, 6(8), e23319.
Chin, J. F., Chu, J. J., & Ng, M. L. (2007). The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect, 9(1), 1-6.
Chokephaibulkit, K., & Perng, G. C. (2013). Challenges for the formulation of a universal vaccine against dengue. Exp Biol Med (Maywood), 238(5), 566-578.
Chu, Y. T., Wan, S. W., Chang, Y. C., Lee, C. K., Wu-Hsieh, B. A., Anderson, R., & Lin, Y. S. (2017). Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. Lab Invest. doi: 10.1038/labinvest.2017.10.
Chuang, Y. C., Lin, J., Lin, Y. S., Wang, S., & Yeh, T. M. (2016). Dengue virus nonstructural protein 1-induced antibodies cross-react with human plasminogen and enhance its activation. J Immunol, 196(3):1218-26.
Chung, K. M., Thompson, B. S., Fremont, D. H., & Diamond, M. S. (2007). Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile Virus-infected cells. J Virol, 81(17), 9551-9555.
Chungue, E., Poli, L., Roche, C., Gestas, P., Glaziou, P., & Markoff, L. J. (1994). Correlation between detection of plasminogen cross-reactive antibodies and hemorrhage in dengue virus infection. J Infect Dis, 170(5), 1304-1307.
Coller, B. A., Clements, D. E., Bett, A. J., Sagar, S. L., & Ter Meulen, J. H. (2011). The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine, 29(42), 7267-7275.
Dejnirattisai, W., Jumnainsong, A., Onsirisakul, N., Fitton, P., Vasanawathana, S., Limpitikul, W., . . . Screaton, G. (2010). Cross-reacting antibodies enhance dengue virus infection in humans. Science, 328(5979), 745-748.
Dejnirattisai, W., Wongwiwat, W., Supasa, S., Zhang, X., Dai, X., Rouvinski, A., . . . Screaton, G. R. (2015). A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol, 16(2), 170-177.
Diamond, M. S., & Pierson, T. C. (2015). Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell, 162(3), 488-492.
Durbin, A. P., Kirkpatrick, B. D., Pierce, K. K., Carmolli, M. P., Tibery, C. M., Grier, P. L., . . . Whitehead, S. S. (2016). A 12-month-interval dosing study in adults indicates that a single dose of the National Institute of Allergy and Infectious Diseases tetravalent dengue vaccine induces a robust neutralizing antibody response. J Infect Dis, 214(6), 832-835.
Etemad, B., Batra, G., Raut, R., Dahiya, S., Khanam, S., Swaminathan, S., & Khanna, N. (2008). An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes. Am J Trop Med Hyg, 79(3), 353-363.
Falconar, A. K. (1997). The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol, 142(5), 897-916.
Falconar, A. K. (2007). Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin Vaccine Immunol, 14(5), 493-504.
Falgout, B., Chanock, R., & Lai, C. J. (1989). Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a. J Virol, 63(5), 1852-1860.
Flamand, M., Megret, F., Mathieu, M., Lepault, J., Rey, F. A., & Deubel, V. (1999). Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol, 73(7), 6104-6110.
Fromen, C. A., Robbins, G. R., Shen, T. W., Kai, M. P., Ting, J. P., & DeSimone, J. M. (2015). Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci U S A, 112(2), 488-493.
Furuta, T., Murao, L. A., Lan, N. T., Huy, N. T., Huong, V. T., Thuy, T. T., . . . Watanabe, N. (2012). Association of mast cell-derived VEGF and proteases in Dengue shock syndrome. PLoS Negl Trop Dis, 6(2), e1505.
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. (2016). Lancet, 388(10053), 1459-1544.
Gregory, A. E., Titball, R., & Williamson, D. (2013). Vaccine delivery using nanoparticles. Front Cell Infect Microbiol, 3, 13.
Gromowski, G. D., & Barrett, A. D. (2007). Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology, 366(2), 349-360.
Guzman, A., & Isturiz, R. E. (2010). Update on the global spread of dengue. Int J Antimicrob Agents, 36 Suppl 1, S40-42.
Guzman, M. G., Hermida, L., Bernardo, L., Ramirez, R., & Guillen, G. (2010). Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines, 9(2), 137-147.
Hadinegoro, S. R., Arredondo-Garcia, J. L., Capeding, M. R., Deseda, C., Chotpitayasunondh, T., Dietze, R., . . . Saville, M. (2015). Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med, 373(13), 1195-1206.
Halstead, S. B. (2013). Identifying protective dengue vaccines: guide to mastering an empirical process. Vaccine, 31(41), 4501-4507.
Halstead, S. B., & Aguiar, M. (2016). Dengue vaccines: Are they safe for travelers? Travel Med Infect Dis, 14(4), 378-383.
Halstead, S. B., Mahalingam, S., Marovich, M. A., Ubol, S., & Mosser, D. M. (2010). Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis, 10(10), 712-722.
Halstead, S. B., Rojanasuphot, S., & Sangkawibha, N. (1983). Original antigenic sin in dengue. Am J Trop Med Hyg, 32(1), 154-156.
Halstead, S. B., & Simasthien, P. (1970). Observations related to the pathogenesis of dengue hemorrhagic fever. II. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. Yale J Biol Med, 42(5), 276-292.
Han, S. J., Ko, H. M., Choi, J. H., Seo, K. H., Lee, H. S., Choi, E. K., . . . Im, S. Y. (2002). Molecular mechanisms for lipopolysaccharide-induced biphasic activation of nuclear factor-kappa B (NF-kappa B). J Biol Chem, 277(47), 44715-44721.
Heinz, F. X., & Stiasny, K. (2012). Flaviviruses and flavivirus vaccines. Vaccine, 30(29), 4301-4306.
Henchal, E. A., & Putnak, J. R. (1990). The dengue viruses. Clin Microbiol Rev, 3(4), 376-396.
Hogenesch, H. (2012). Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol, 3, 406.
Im, S. Y., Han, S. J., Ko, H. M., Choi, J. H., Chun, S. B., Lee, D. G., . . . Lee, H. K. (1997). Involvement of nuclear factor-kappa B in platelet-activating factor-mediated tumor necrosis factor-alpha expression. Eur J Immunol, 27(11), 2800-2804.
Jain, B., Chaturvedi, U. C., & Jain, A. (2014). Role of intracellular events in the pathogenesis of dengue; an overview. Microb Pathog, 69-70, 45-52.
Johnson, A. J., & Roehrig, J. T. (1999). New mouse model for dengue virus vaccine testing. J Virol, 73(1), 783-786.
Kanchan, V., & Panda, A. K. (2007). Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials, 28(35), 5344-5357.
Kim, M. Y., Kim, B. Y., Oh, S. M., Reljic, R., Jang, Y. S., & Yang, M. S. (2016). Oral immunisation of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus dengue cEDIII antigen induces antibodies to all four dengue serotypes. Plant Mol Biol, 92(3), 347-356.
Kirkpatrick, B. D., Durbin, A. P., Pierce, K. K., Carmolli, M. P., Tibery, C. M., Grier, P. L., . . . Whitehead, S. S. (2015). Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis, 212(5), 702-710.
Klein, D. E., Choi, J. L., & Harrison, S. C. (2013). Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol, 87(4), 2287-2293.
Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., . . . Strauss, J. H. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108(5), 717-725.
Kurane, I., Hebblewaite, D., Brandt, W. E., & Ennis, F. A. (1984). Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol, 52(1), 223-230.
Lazo, L., Izquierdo, A., Suzarte, E., Gil, L., Valdes, I., Marcos, E., . . . Hermida Cruz, L. (2014). Evaluation in mice of the immunogenicity and protective efficacy of a tetravalent subunit vaccine candidate against dengue virus. Microbiol Immunol, 58(4), 219-226.
Lee, H. (2014). Protection of anti-dengue virus nonstructural protein 1 antibodies in the wild type and humanized mouse models. (Master thesis of National Cheng Kung University)
Lee, S., & Nguyen, M. T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51-57.
Lee, Y. R., Hu, H. Y., Kuo, S. H., Lei, H. Y., Lin, Y. S., Yeh, T. M., . . . Liu, H. S. (2013). Dengue virus infection induces autophagy: an in vivo study. J Biomed Sci, 20, 65.
Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., Villalobos, I., de, C., . . . Rico-Hesse, R. (1999). Dengue virus structural differences that correlate with pathogenesis. J Virol, 73(6), 4738-4747.
Leng, C. H., Liu, S. J., Tsai, J. P., Li, Y. S., Chen, M. Y., Liu, H. H., . . . Chen, H. W. (2009). A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect, 11(2), 288-295.
Lin, C. F., Lei, H. Y., Liu, C. C., Liu, H. S., Yeh, T. M., Wang, S. T., . . . Lin, Y. S. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol, 63(2), 143-149.
Lin, C. F., Lei, H. Y., Shiau, A. L., Liu, C. C., Liu, H. S., Yeh, T. M., . . . Lin, Y. S. (2003). Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol, 69(1), 82-90.
Lin, S. W., Chuang, Y. C., Lin, Y. S., Lei, H. Y., Liu, H. S., & Yeh, T. M. (2012). Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect, 64(3), 325-334.
Lin, Y. S., Yeh, T. M., Lin, C. F., Wan, S. W., Chuang, Y. C., Hsu, T. K., . . . Lei, H. Y. (2011). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood), 236(5), 515-523.
Lindblad, E. B. (2004). Aluminium adjuvants--in retrospect and prospect. Vaccine, 22(27-28), 3658-3668.
Lindow, J. C., Durbin, A. P., Whitehead, S. S., Pierce, K. K., Carmolli, M. P., & Kirkpatrick, B. D. (2013). Vaccination of volunteers with low-dose, live-attenuated, dengue viruses leads to serotype-specific immunologic and virologic profiles. Vaccine, 31(33), 3347-3352.
Liu, I. J., Chiu, C. Y., Chen, Y. C., & Wu, H. C. (2011). Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J Biol Chem, 286(11), 9726-9736.
Low, J. G., Ooi, E. E., & Vasudevan, S. G. (2017). Current status of dengue therapeutics research and development. J Infect Dis, 215(suppl_2), S96-s102.
Luo, D., Xu, T., Hunke, C., Gruber, G., Vasudevan, S. G., & Lescar, J. (2008). Crystal structure of the NS3 protease-helicase from dengue virus. J Virol, 82(1), 173-183.
Mackenzie, J. M., Jones, M. K., & Young, P. R. (1996). Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology, 220(1), 232-240.
Malavige, G. N., & Ogg, G. S. (2017). Pathogenesis of vascular leak in dengue virus infection. Immunology, 151(3), 261-269.
Markoff, L. J., Innis, B. L., Houghten, R., & Henchal, L. S. (1991). Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J Infect Dis, 164(2), 294-301.
Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., . . . Young, P. R. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med, 7(304), 304ra142.
Mohr, E., Cunningham, A. F., Toellner, K. M., Bobat, S., Coughlan, R. E., Bird, R. A., . . . Serre, K. (2010). IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc Natl Acad Sci U SA, 107(40), 17292-17297.
Monath, T. P., Seligman, S. J., Robertson, J. S., Guy, B., Hayes, E. B., Condit, R. C., . . . Chen, R. T. (2015). Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment. Vaccine, 33(1), 62-72.
Mukhopadhyay, S., Kuhn, R. J., & Rossmann, M. G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3(1), 13-22.
Muller, D. A., & Young, P. R. (2013). The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res, 98(2), 192-208.
Ng, J. K., Zhang, S. L., Tan, H. C., Yan, B., Martinez, J. M., Tan, W. Y., . . . Alonso, S. (2014). First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PLoS Pathog, 10(4), e1004031.
Oishi, K., Inoue, S., Cinco, M. T., Dimaano, E. M., Alera, M. T., Alfon, J. A., . . . Nagatake, T. (2003). Correlation between increased platelet-associated IgG and thrombocytopenia in secondary dengue virus infections. J Med Virol, 71(2), 259-264.
Pang, E. L., & Loh, H. S. (2017). Towards development of a universal dengue vaccine - How close are we? Asian Pac J Trop Med, 10(3), 220-228.
Pang, T., Cardosa, M. J., & Guzman, M. G. (2007). Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol, 85(1), 43-45.
Perera, R., & Kuhn, R. J. (2008). Structural proteomics of dengue virus. Curr Opin Microbiol, 11(4), 369-377.
Prestwood, T. R., Prigozhin, D. M., Sharar, K. L., Zellweger, R. M., & Shresta, S. (2008). A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol, 82(17), 8411-8421.
Ramon, G. (1924). Sur la toxine et sur I’anatoxine diphtheriques. Ann. Inst. Pasteur, 38, 1-10.
Rothman, A. L. (2011). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol, 11(8), 532-543.
Saito, M., Oishi, K., Inoue, S., Dimaano, E. M., Alera, M. T., Robles, A. M., . . . Nagatake, T. (2004). Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin Exp Immunol, 138(2), 299-303.
Saw, W. G., Tria, G., Gruber, A., Subramanian Manimekalai, M. S., Zhao, Y., Chandramohan, A., . . . Gruber, G. (2015). Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution. Acta Crystallogr D Biol Crystallogr, 71(Pt 11), 2309-2327.
Screaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol, 15(12), 745-759.
Shresta, S., Sharar, K. L., Prigozhin, D. M., Snider, H. M., Beatty, P. R., & Harris, E. (2005). Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol, 175(6), 3946-3954.
Shu, P. Y., Chen, L. K., Chang, S. F., Su, C. L., Chien, L. J., Chin, C., . . . Huang, J. H. (2004). Dengue virus serotyping based on envelope and membrane and nonstructural protein NS1 serotype-specific capture immunoglobulin M enzyme-linked immunosorbent assays. J Clin Microbiol, 42(6), 2489-2494.
Sridharan, A., Chen, Q., Tang, K. F., Ooi, E. E., Hibberd, M. L., & Chen, J. (2013). Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol, 87(21), 11648-11658.
Srikiatkhachorn, A., Mathew, A., & Rothman, A. L. (2017). Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol. doi: 10.1007/s00281-017-0625-1
St John, A. L. (2013). Influence of mast cells on dengue protective immunity and immune pathology. PLoS Pathog, 9(12), e1003783.
St John, A. L., Abraham, S. N., & Gubler, D. J. (2013). Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat Rev Microbiol, 11(6), 420-426.
Stephenson, J. R. (2005). Understanding dengue pathogenesis: implications for vaccine design. Bull World Health Organ, 83(4), 308-314.
Syenina, A., Jagaraj, C. J., Aman, S. A., Sridharan, A., & St John, A. L. (2015). Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcgamma receptors. Elife, 4. doi: 10.7554/eLife.05291
Takahashi, H., & Shibuya, M. (2005). The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond), 109(3), 227-241.
Torchilin, V. P. (2006). Multifunctional nanocarriers. Adv Drug Deliv Rev, 58(14), 1532-1555.
Treuel, L., Jiang, X., & Nienhaus, G. U. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface, 10(82), 20120939.
Tsai, T. T., Chen, C. L., Lin, Y. S., Chang, C. P., Tsai, C. C., Cheng, Y. L., . . . Lin, C. F. (2016). Microglia retard dengue virus-induced acute viral encephalitis. Sci Rep, 6, 27670.
Tuchinda, M., Dhorranintra, B., & Tuchinda, P. (1977). Histamine content in 24-hour urine in patients with dengue haemorrhagic fever. Southeast Asian J Trop Med Public Health, 8(1), 80-83.
Tung, Y. C., Lin, K. H., Chang, K., Ke, L. Y., Ke, G. M., Lu, P. L., . . . Chiang, H. C. (2008). Phylogenetic study of dengue-3 virus in Taiwan with sequence analysis of the core gene. Kaohsiung J Med Sci, 24(2), 55-62.
Uto, T., Akagi, T., Toyama, M., Nishi, Y., Shima, F., Akashi, M., & Baba, M. (2011). Comparative activity of biodegradable nanoparticles with aluminum adjuvants: antigen uptake by dendritic cells and induction of immune response in mice. Immunol Lett, 140(1-2), 36-43.
Uto, T., Akagi, T., Yoshinaga, K., Toyama, M., Akashi, M., & Baba, M. (2011). The induction of innate and adaptive immunity by biodegradable poly(gamma-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterials, 32(22), 5206-5212.
Vadas, P., Gold, M., Perelman, B., Liss, G. M., Lack, G., Blyth, T., . . . Yeung, J. (2008). Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med, 358(1), 28-35.
Valone, F. H., & Epstein, L. B. (1988). Biphasic platelet-activating factor synthesis by human monocytes stimulated with IL-1-beta, tumor necrosis factor, or IFN-gamma. J Immunol, 141(11), 3945-3950.
Vatti, A., Monsalve, D. M., Pacheco, Y., Chang, C., Anaya, J. M., & Gershwin, M. E. (2017). Original antigenic sin: A comprehensive review. J Autoimmun. doi: 10.1016/j.jaut.2017.04.008
Villar, L., Dayan, G. H., Arredondo-Garcia, J. L., Rivera, D. M., Cunha, R., Deseda, C., . . . Noriega, F. (2015). Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med, 372(2), 113-123.
Wahala, W. M., Kraus, A. A., Haymore, L. B., Accavitti-Loper, M. A., & de Silva, A. M. (2009). Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology, 392(1), 103-113.
Wan, S. W., Lin, C. F., Chen, M. C., Lei, H. Y., Liu, H. S., Yeh, T. M., ... Lin, Y. S. (2008). C-terminal region of dengue virus nonstructural protein 1 is involved in endothelial cell cross-reactivity via molecular mimicry. Am J Infect Dis.4(1), 85-91.
Wan, S. W., Lin, C. F., Wang, S., Chen, Y. H., Yeh, T. M., Liu, H. S., . . . Lin, Y. S. (2013). Current progress in dengue vaccines. J Biomed Sci, 20, 37.
Wan, S. W., Lu, Y. T., Huang, C. H., Lin, C. F., Anderson, R., Liu, H. S., . . . Lin, Y. S. (2014). Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One, 9(3), e92495.
Wang, S. F., Wang, W. H., Chang, K., Chen, Y. H., Tseng, S. P., Yen, C. H., . . . Chen, Y. M. (2016). Severe Dengue Fever Outbreak in Taiwan. Am J Trop Med Hyg, 94(1), 193-197.
Whitehead, S. S., Blaney, J. E., Durbin, A. P., & Murphy, B. R. (2007). Prospects for a dengue virus vaccine. Nat Rev Microbiol, 5(7), 518-528.
WHO position paper: Dengue vaccine - July 2016. (2016). Wkly Epidemiol Rec, 91(30), 349-364.
Wu-Hsieh, B. A., Yen, Y. T., & Chen, H. C. (2009). Dengue hemorrhage in a mouse model. Ann N Y Acad Sci, 1171 Suppl 1, E42-47.
Yen, Y. T., Chen, H. C., Lin, Y. D., Shieh, C. C., & Wu-Hsieh, B. A. (2008). Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol, 82(24), 12312-12324.
Zaharoff, D. A., Rogers, C. J., Hance, K. W., Schlom, J., & Greiner, J. W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25(11), 2085-2094.