| 研究生: |
趙晟博 Chao, Cheng-Po |
|---|---|
| 論文名稱: |
多孔性磷酸鈣鹽之機械及生物性質研究 Studies on the mechanical and biological properties of porous calcium phosphate |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 多孔性 、磷酸鈣鹽 |
| 外文關鍵詞: | porous, calcium phosphate |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在21世紀的今天,人類最主要的死亡原因仍是疾病及其所引發的器官壞死或衰竭,亦或是組織的功能喪失。目前對於這些喪失功能的組織,所能給予的治療方式主要只有器官移植與使用生醫材料替代物。然而這些方法都存在著許多缺點,若是能將這些組織於已修復,或是將之更新,便能提供一種新的治療方式。組織工程的重點在於修復或製造新的組織,以替換原有壞死的組織,組織工程分為三大要素,分別為細胞來源,細胞成長與分化因子,細胞支架,彼此缺一不可。
本實驗選用多孔性磷酸鈣鹽作為骨組織工程的細胞支架,磷酸鈣鹽具有生物相容性佳,且與骨組織的細胞外基質十分相似。骨組織中的細胞外基質約有70%(wt%)便是由磷酸鈣鹽所組成,另外30%為有機物,主要是膠原蛋白。實驗上發現多孔性磷酸鈣鹽的孔隙率,與孔洞大小,皆與骨組織再造時有密切關係。
實驗中利用各種不同的孔洞先驅物與磷酸鈣鹽混合,希望能找出較佳的孔洞先驅物,並且利用各種方法增加強度,並進行細胞毒性測試,希望能製造出較佳的骨組織工程支架。
Andri anjatovo H, Lemaître J “effects of polysaccharides on the cement properties in the mono calcium phosphate/β-tricalcium phosphate system.” Innov Tech Bio Med 16[1]:140-147,1995
Baier, R. E. “applied chemistry at protein interface” Ave. Chem. Ser. 145:1
Borden M., Attawia M., Khan Y., Laurencin C. T., “Tissue engineered microsphere-based matrices for bone repair:design and evaluation”, Biomaterials, 23(2), p.551-559, 2002
Bong-Soon Chang, Choon-Ki Lee, Kug-Sun Hong, Hyuk-Joon Youn, Hyun-Seung Ryu, Sung-Soo Chung, Kun-Woo Park,” Osteoconduction at porous hydroxyapatite with various pore configurations” Biomaterials 21 1291-1298.,2000
Brown W. E., Chow L.C., ”A new calcium phosphate setting cement”, J. Dent. Res., Abstract 207, 1983
Bu Park J., “Biomaterials science and engineering” p. 131, 1984
Chaignaud B. E., Langer R., Vacanti J. P., “The history of tissue engineering using synthetic biodegradable polymer scaffolds and cells”, Boston : Birkhauser, p.1-14, 1997
Chang B. S., Lee C. K., Hong K. S., Youn H. J., Ryu H. S., Chung S. S., Park K. W., “Osteoconduction at porous hydorxyapatite with various pore configurations”, Biomaterials, 21, p.1291-1298, 2000
Chen C. S., Yannas I. V., Spector M., “Pore strain behaviour of collagen-glycosaminoglycan analogues of extracellular matrix.” Biomaterials, p.777-783, 1995
Christel K., K. de Groot, Chen W., Li Y. and Zhang X., “Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues”, Biomaterials, 15(1), p. 31-34, 1994
Daculsi G., LeGeros RZ. and Heughebaert M., ”Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics”, Calcif. Tiss. Int, 46, p.20-27, 1990
de Groot K., “Ceramics of calcium phosphates:preparation and properties”, p. 99, 1983
de Groot K., “Bioceramics of calcium posphate”, Boca Raton Florida, CRC Press, 1983
de Groot K., C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, "Chemistry of Calcium phosphate bioceramics", pp.3-16, in “Handbook of Bioactive Ceramics Vol.II”, edited by T. Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca Raton, FL, (1990).
de Lange G. L. and Donath L., “Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite coated titanium implants”, Biomaterials, 10, p. 121-125, 1989
El Deeb M. E., Hosny M. and Sharawy M., “Osteogenesis in composite grafts of allogenic demineralized bone powder and porous hydroxyapatite”, J. Oral maxillofac. Surg, 47, p.50-56, 1989
Fabbi, M., Celotti G. C. and Raraglioli A., “Hydroxyapatite-based porous aggregates:Physico-chemical nature, structure, texture and architecture”, Biomaterials, 16, p. 225, 1995
Friberg J, Fernandez E, Sarda S, Nilsson M, Dinebra MP, Martinez s, Planell JA(2001) An experimental approach to the study of rheology behavior of synthetic bone calcium phosphate cements. Key Eug Master 192-195;777-781
Freed L. E., Marquis J. C., Nohria A., Emmanual J.,. Mikos A. G, and.Langer R, ”Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers,” J Biomed Mater Res 27(1), 11-23,1993
Goshima J., Goldberg V. M. and Caplan A., ”Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramics”, Biomaterials, 12, p.253-258, 1991
Hench L. L., ”Bioceramics:From concept to cline”, J. Am. Ceram. Soc., 74(7), p. 1487-1510, 1991
Heughebaert M., Le Geros R. Z., Gineste M., Guihem A. and Bonel G., “Physiochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites”, J. Biomed. Mat. Res., 22, p.257-268, 1988
Hirayama, Yasuhiko, “Process for producing calcium phosphate ceramics having porous surface”, United States Patent : US5017518, 1991
Hirota K., Y.T. asegawa, and H. Monma, “Densification of hydroxyapatite by hot isostatic pressing”, Yogyo-Kyokai-Shi, 90, p.680-682, 1982.
Hulbert S. F., Klawitter J. J. and Leonard R. B., In ceramics in severe environments, ed. Kriegel W. W. and Palmour H., New York, p.417, 1971
Hulbert S. F., Yamamuro T., Hench L. L. and Wilson J., ”Bioactive ceramic-bone interface”, CRC Handbook of Bioactive Ceramics, vol. 1, ed. p. 3-6, 1991
Ishikawa K. and Asaoka K., ”Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement”, J. Biomed. Mat. Res., Vol. 2 9, 1537-1543,1995
Lin F. H., Lin C. C., Liu H. C., Huang Y. Y., Wang C. Y. and Lu C. M., “Sintered porous DP-bioglass and hydroxyapatite as bone substitute”, Biomaterials, 15(13), p.1087-1097, 1994
Li S., Garreau H., Vert M., ”Structure-property relationship in the case of the degradation of massive aliphatic poly(α-hydroxy acids) in aquious media. Part 1:poly(D,L-lactic acid)”, J. Mat. Sci.:Mat. Med., 1, p.123, 1990
Liu D. M., “Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramics”, Cer. Int., 23, p. 135-139, 1997
Lu L., Mikos A. G., MRS Bulletin, 21(11), p.28-31, 1996
Mikos G., Bao Y., Cima L. G., Ingber D. E, Vacanti J.P., and.Langer R,” Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation,” J Biomed Mater Res 27(2), 183-189,1993
Mary C.Beckerle, ”Cell adhesion”, 2002
Mooney D. J. and Langer R., in The Biomedical Engineering Handbook(Brozino J. D. ed.), p.1609-1618
Ueda M., I. Tohnai, and H. Nakai, “Tissue engineering research in oral implant surgery.” Artificial Organs, 25(3), 164-171,2000
Ohgushi H., Okumura M. and Tamai S., “Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate:A comparative histomorphometric study of ectopic bone formation”, J. Biomed. Mat. Res., 24, p.1563-1570, 1990
Park A., Wu B., Griffite L. G., J. Biomat. Sci.-Polymer, 9, p.89-110, 1998
Park JB (1995) Orthopedic prosthesis fixation .In: Bronzino JD(ed) The biomedical engineering handbook-CRC Press, Boca Raton, pp 704-724
Zuk P. A., M. Zhu, H. Mizuno, J.Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick, “Mulitilineage cell from human adipose tissue: Implications for cell-based therapies.” The American surgen, Mar, 61, 231-236,,1990
. del Real R.P, J.G.C. Wolke, M. Vallet-Reg, J.A. Jansen, ” A new method to produce macropores in calcium phosphate cements” Biomaterials 23 p.3673–3680,2002
Racquel Zapanta LeGeros, ”Properties of osteoconductive biomaterials : Calcium phosphates” Clinical orthopaedics ana related research,p.81-98,2002
Schugens C., Maguet V., Grandfils C., jerome R., Teyssie P., “Poly-lactide macroporous biodegradable implants for cell transplantation 2. Preparation of polylactide foam by liquid-liquid phase separation”, J. Biomed. Mat. Res., 30, p.449-461, 1996
Peter S. J., Liang C. R., Kim D. J.,. Widmer M. S, and Mikos A. G., ”Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerophosphate, and L-ascorbic acid.” J. Cell. Biochem.,71-, 55-62,(1998)
Thomson R. C., Wake M. C., Yaszemski M. J. and Mikos A. G., ”Biodegradable polymer scaffolds to regenerate organs”, Adv. Polym. Sci., 122, p.245-274, 1995
Blun T.. L. Sieminski K, A, Gooch K. J.,. Courter D. L,. Hollander A. P, Nahir A. M.,. Langer R,. Novakovic G. V, and. Freed L. E, “Differential effects of growth factors on tissue-engineered cartilage.” Tissue Engineering, 8(1):73-84, 2002
Thompson D. E., Agrawal C. M. and Athanasiou K., “The effects of dynamic compressive loading on biodegradable implants of 50-50% polylactic acid-polyglycolic acid”, Tissue Eng., 2(1), p.61-74, 1996
Noshi T., Yoshikawa T, Dohi Y., Ikeuchi M, Horiuchi K., Ichijima K., Sugimura M., Yonemasu K., and Ohgushi H., “Recombinant human bone morphogenetic protein-2 potentiates the In vivo osteogenic abi;iti of marro/hydroxyapatite composites.” Artificial organs, 25(3), 201-208,2000
Van Blitterswijk C. A., Hesseling S. C., Grote J. J., Koerten H. K. and de Groot K.,” The biocompatibility of hydroxyapatite ceramics:A study of retrieved human middle ear implants”, J. Biomed. Mat. Res., 24, p.433-43, 1990
Vieth W. R., ”Diffusion in and through polymers : prinsciples and applications”, 1991
Yamasaki H. and Sakai H., “Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs”, Biomaterials, 13(5), p.308-312, 1992
Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone”, Biomaterials, 17, p.175-185, 1996
Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “In vitro degradation of a poly(propylene fumarate) based composite materials”, Biomaterials, 17, p.2127-2130, 1996
Yang Z., Yuan H., Zou P., Tong W., Qu S. and Zhang X., ”Osteogenic response to extraskeletally implanted synthetic porous calcium phosphate ceramics:an early stage histomorphological study in dogs”, J. Mat. Sci Mat. Med., 8, p.697-701, 1997
Yuan H., Kurashina K., de Bruijn J. D., Li Y., de Groot K. and Zhang X, ”A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics”, Biomaterials, 20, p. 1799-1806, 1999