簡易檢索 / 詳目顯示

研究生: 趙晟博
Chao, Cheng-Po
論文名稱: 多孔性磷酸鈣鹽之機械及生物性質研究
Studies on the mechanical and biological properties of porous calcium phosphate
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 60
中文關鍵詞: 多孔性磷酸鈣鹽
外文關鍵詞: porous, calcium phosphate
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在21世紀的今天,人類最主要的死亡原因仍是疾病及其所引發的器官壞死或衰竭,亦或是組織的功能喪失。目前對於這些喪失功能的組織,所能給予的治療方式主要只有器官移植與使用生醫材料替代物。然而這些方法都存在著許多缺點,若是能將這些組織於已修復,或是將之更新,便能提供一種新的治療方式。組織工程的重點在於修復或製造新的組織,以替換原有壞死的組織,組織工程分為三大要素,分別為細胞來源,細胞成長與分化因子,細胞支架,彼此缺一不可。
    本實驗選用多孔性磷酸鈣鹽作為骨組織工程的細胞支架,磷酸鈣鹽具有生物相容性佳,且與骨組織的細胞外基質十分相似。骨組織中的細胞外基質約有70%(wt%)便是由磷酸鈣鹽所組成,另外30%為有機物,主要是膠原蛋白。實驗上發現多孔性磷酸鈣鹽的孔隙率,與孔洞大小,皆與骨組織再造時有密切關係。
    實驗中利用各種不同的孔洞先驅物與磷酸鈣鹽混合,希望能找出較佳的孔洞先驅物,並且利用各種方法增加強度,並進行細胞毒性測試,希望能製造出較佳的骨組織工程支架。

    總目錄 第一章 研究背景簡介…………………………………………………1 1-1 簡介…………………………………………...…………………1 1-2 組織工程………………………………………………………...2 1-2-1組織工程簡介……………………………………………….2 1-2-2組織及細胞外基質………………………………………….7 1-2-3組織工程支架材料…………………………………….……14 1-2-4組織工程支架的做法……………………………………….16 1-2-5細胞貼附與支架表面改質………………………………….18 1-3 磷酸鈣鹽與氫氧基磷灰石……………………………………...22 1-3-1磷酸鈣鹽(Ca/P)與氫氧基磷灰石(HA)的特性………….22 1-3-2磷酸鈣鹽的溶解度與氫氧基磷灰石的離子取代現象….…23 1-3-3磷灰石的熱性質……………………..……………………...28 1-3-4多孔性磷酸鈣材料……………………………………….…30 第二章 研究動機及研究目的..………………………………………..33 第三章 實驗方法及步驟………………..……………………………..34 抗壓強度測試………………………………………………………..34 X光繞射……………………………………………………………..34 孔隙度測試…………………………………………….…………….34 紅外光光譜分析……………………………………………………..35 細胞毒性測試………………………………………………………..35 第四章 結果與討論……………………………………………………38 4-1:材料細胞毒性測試………………………………………………38 第五章 結論……………………………………………………………46 第六章 參考文獻………………………………………………………47 圖目錄 圖1-1:膠原蛋白與膠原纖維及編織過程………………………………9 圖1-2:GAGs及proteoglycans的結構………………………………..11 圖1-3:Hyaluronate的結構…………………………………………….11 圖1-4:Integrin的結構圖………………………………………………..13 圖1-5:Fibronectein的主要結構………………………………………15 圖1-6:細胞-材料黏結示意圖………………………….……….……..21 圖1-7磷酸鈣鹽的溶解曲線圖……………………………….………...24 圖1-8:氫氧基磷灰石HA的晶格結構圖…………………………….28圖4-1(a):多孔性試片的細胞毒性測試………………………………...40圖4-1(b):多孔性試片的細胞毒性測試………………….....…………..41圖4-1(c):多孔性試片的細胞毒性測試………………………..……….42圖4-2:多孔性試片的黏著性性測試…………...………….………..….43 照片4-1(a):37℃浸泡試片萃取液所培養之細胞型態觀察…………..44 照片4-1(b):軟骨細胞與不同材料萃取液培養3天後細胞型態……..45 表目錄 表1-1 氫氧基磷灰石(HA)植入材的發展……………………………...3 表1-2 BMP在細胞分化所扮演的角色………………………………....6 表1-3 Extracellular martix(ECM)的主要組成及功能…………………8 表1-4 生物吸收性高分子聚合物……………………………………..17 表1-5 HA中常見的取代離子………………………………………….26 表1-6 磷酸鈣鹽一些常見的熱行為…………………………………..29

    Andri anjatovo H, Lemaître J “effects of polysaccharides on the cement properties in the mono calcium phosphate/β-tricalcium phosphate system.” Innov Tech Bio Med 16[1]:140-147,1995

    Baier, R. E. “applied chemistry at protein interface” Ave. Chem. Ser. 145:1

    Borden M., Attawia M., Khan Y., Laurencin C. T., “Tissue engineered microsphere-based matrices for bone repair:design and evaluation”, Biomaterials, 23(2), p.551-559, 2002

    Bong-Soon Chang, Choon-Ki Lee, Kug-Sun Hong, Hyuk-Joon Youn, Hyun-Seung Ryu, Sung-Soo Chung, Kun-Woo Park,” Osteoconduction at porous hydroxyapatite with various pore configurations” Biomaterials 21 1291-1298.,2000

    Brown W. E., Chow L.C., ”A new calcium phosphate setting cement”, J. Dent. Res., Abstract 207, 1983

    Bu Park J., “Biomaterials science and engineering” p. 131, 1984

    Chaignaud B. E., Langer R., Vacanti J. P., “The history of tissue engineering using synthetic biodegradable polymer scaffolds and cells”, Boston : Birkhauser, p.1-14, 1997

    Chang B. S., Lee C. K., Hong K. S., Youn H. J., Ryu H. S., Chung S. S., Park K. W., “Osteoconduction at porous hydorxyapatite with various pore configurations”, Biomaterials, 21, p.1291-1298, 2000

    Chen C. S., Yannas I. V., Spector M., “Pore strain behaviour of collagen-glycosaminoglycan analogues of extracellular matrix.” Biomaterials, p.777-783, 1995

    Christel K., K. de Groot, Chen W., Li Y. and Zhang X., “Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues”, Biomaterials, 15(1), p. 31-34, 1994

    Daculsi G., LeGeros RZ. and Heughebaert M., ”Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics”, Calcif. Tiss. Int, 46, p.20-27, 1990

    de Groot K., “Ceramics of calcium phosphates:preparation and properties”, p. 99, 1983

    de Groot K., “Bioceramics of calcium posphate”, Boca Raton Florida, CRC Press, 1983

    de Groot K., C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, "Chemistry of Calcium phosphate bioceramics", pp.3-16, in “Handbook of Bioactive Ceramics Vol.II”, edited by T. Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca Raton, FL, (1990).

    de Lange G. L. and Donath L., “Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite coated titanium implants”, Biomaterials, 10, p. 121-125, 1989

    El Deeb M. E., Hosny M. and Sharawy M., “Osteogenesis in composite grafts of allogenic demineralized bone powder and porous hydroxyapatite”, J. Oral maxillofac. Surg, 47, p.50-56, 1989

    Fabbi, M., Celotti G. C. and Raraglioli A., “Hydroxyapatite-based porous aggregates:Physico-chemical nature, structure, texture and architecture”, Biomaterials, 16, p. 225, 1995

    Friberg J, Fernandez E, Sarda S, Nilsson M, Dinebra MP, Martinez s, Planell JA(2001) An experimental approach to the study of rheology behavior of synthetic bone calcium phosphate cements. Key Eug Master 192-195;777-781

    Freed L. E., Marquis J. C., Nohria A., Emmanual J.,. Mikos A. G, and.Langer R, ”Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers,” J Biomed Mater Res 27(1), 11-23,1993

    Goshima J., Goldberg V. M. and Caplan A., ”Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramics”, Biomaterials, 12, p.253-258, 1991

    Hench L. L., ”Bioceramics:From concept to cline”, J. Am. Ceram. Soc., 74(7), p. 1487-1510, 1991

    Heughebaert M., Le Geros R. Z., Gineste M., Guihem A. and Bonel G., “Physiochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites”, J. Biomed. Mat. Res., 22, p.257-268, 1988

    Hirayama, Yasuhiko, “Process for producing calcium phosphate ceramics having porous surface”, United States Patent : US5017518, 1991

    Hirota K., Y.T. asegawa, and H. Monma, “Densification of hydroxyapatite by hot isostatic pressing”, Yogyo-Kyokai-Shi, 90, p.680-682, 1982.

    Hulbert S. F., Klawitter J. J. and Leonard R. B., In ceramics in severe environments, ed. Kriegel W. W. and Palmour H., New York, p.417, 1971

    Hulbert S. F., Yamamuro T., Hench L. L. and Wilson J., ”Bioactive ceramic-bone interface”, CRC Handbook of Bioactive Ceramics, vol. 1, ed. p. 3-6, 1991

    Ishikawa K. and Asaoka K., ”Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement”, J. Biomed. Mat. Res., Vol. 2 9, 1537-1543,1995

    Lin F. H., Lin C. C., Liu H. C., Huang Y. Y., Wang C. Y. and Lu C. M., “Sintered porous DP-bioglass and hydroxyapatite as bone substitute”, Biomaterials, 15(13), p.1087-1097, 1994

    Li S., Garreau H., Vert M., ”Structure-property relationship in the case of the degradation of massive aliphatic poly(α-hydroxy acids) in aquious media. Part 1:poly(D,L-lactic acid)”, J. Mat. Sci.:Mat. Med., 1, p.123, 1990

    Liu D. M., “Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramics”, Cer. Int., 23, p. 135-139, 1997

    Lu L., Mikos A. G., MRS Bulletin, 21(11), p.28-31, 1996

    Mikos G., Bao Y., Cima L. G., Ingber D. E, Vacanti J.P., and.Langer R,” Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation,” J Biomed Mater Res 27(2), 183-189,1993

    Mary C.Beckerle, ”Cell adhesion”, 2002

    Mooney D. J. and Langer R., in The Biomedical Engineering Handbook(Brozino J. D. ed.), p.1609-1618

    Ueda M., I. Tohnai, and H. Nakai, “Tissue engineering research in oral implant surgery.” Artificial Organs, 25(3), 164-171,2000

    Ohgushi H., Okumura M. and Tamai S., “Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate:A comparative histomorphometric study of ectopic bone formation”, J. Biomed. Mat. Res., 24, p.1563-1570, 1990

    Park A., Wu B., Griffite L. G., J. Biomat. Sci.-Polymer, 9, p.89-110, 1998

    Park JB (1995) Orthopedic prosthesis fixation .In: Bronzino JD(ed) The biomedical engineering handbook-CRC Press, Boca Raton, pp 704-724

    Zuk P. A., M. Zhu, H. Mizuno, J.Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick, “Mulitilineage cell from human adipose tissue: Implications for cell-based therapies.” The American surgen, Mar, 61, 231-236,,1990

    . del Real R.P, J.G.C. Wolke, M. Vallet-Reg, J.A. Jansen, ” A new method to produce macropores in calcium phosphate cements” Biomaterials 23 p.3673–3680,2002

    Racquel Zapanta LeGeros, ”Properties of osteoconductive biomaterials : Calcium phosphates” Clinical orthopaedics ana related research,p.81-98,2002

    Schugens C., Maguet V., Grandfils C., jerome R., Teyssie P., “Poly-lactide macroporous biodegradable implants for cell transplantation 2. Preparation of polylactide foam by liquid-liquid phase separation”, J. Biomed. Mat. Res., 30, p.449-461, 1996

    Peter S. J., Liang C. R., Kim D. J.,. Widmer M. S, and Mikos A. G., ”Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerophosphate, and L-ascorbic acid.” J. Cell. Biochem.,71-, 55-62,(1998)

    Thomson R. C., Wake M. C., Yaszemski M. J. and Mikos A. G., ”Biodegradable polymer scaffolds to regenerate organs”, Adv. Polym. Sci., 122, p.245-274, 1995

    Blun T.. L. Sieminski K, A, Gooch K. J.,. Courter D. L,. Hollander A. P, Nahir A. M.,. Langer R,. Novakovic G. V, and. Freed L. E, “Differential effects of growth factors on tissue-engineered cartilage.” Tissue Engineering, 8(1):73-84, 2002

    Thompson D. E., Agrawal C. M. and Athanasiou K., “The effects of dynamic compressive loading on biodegradable implants of 50-50% polylactic acid-polyglycolic acid”, Tissue Eng., 2(1), p.61-74, 1996

    Noshi T., Yoshikawa T, Dohi Y., Ikeuchi M, Horiuchi K., Ichijima K., Sugimura M., Yonemasu K., and Ohgushi H., “Recombinant human bone morphogenetic protein-2 potentiates the In vivo osteogenic abi;iti of marro/hydroxyapatite composites.” Artificial organs, 25(3), 201-208,2000

    Van Blitterswijk C. A., Hesseling S. C., Grote J. J., Koerten H. K. and de Groot K.,” The biocompatibility of hydroxyapatite ceramics:A study of retrieved human middle ear implants”, J. Biomed. Mat. Res., 24, p.433-43, 1990

    Vieth W. R., ”Diffusion in and through polymers : prinsciples and applications”, 1991

    Yamasaki H. and Sakai H., “Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs”, Biomaterials, 13(5), p.308-312, 1992

    Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone”, Biomaterials, 17, p.175-185, 1996

    Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “In vitro degradation of a poly(propylene fumarate) based composite materials”, Biomaterials, 17, p.2127-2130, 1996

    Yang Z., Yuan H., Zou P., Tong W., Qu S. and Zhang X., ”Osteogenic response to extraskeletally implanted synthetic porous calcium phosphate ceramics:an early stage histomorphological study in dogs”, J. Mat. Sci Mat. Med., 8, p.697-701, 1997

    Yuan H., Kurashina K., de Bruijn J. D., Li Y., de Groot K. and Zhang X, ”A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics”, Biomaterials, 20, p. 1799-1806, 1999

    下載圖示 校內:2006-07-08公開
    校外:2008-07-08公開
    QR CODE