| 研究生: |
陳芳毅 Chen, Fang-Yi |
|---|---|
| 論文名稱: |
己二腈電解合成中四級銨鹽特性之研究 A Study on Characteristics of Quaternary Ammonium Salts in Electrosynthesis of Adiponitrile |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 丙烯腈 、己二腈 、四級銨鹽 、吸附特性 、電解合成 |
| 外文關鍵詞: | Acrylonitrile, Adiponitrile, Quaternary ammonium salt, Adsorption characteristics, Electrosynthesis |
| 相關次數: | 點閱:96 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來國內尼龍(nylon)產業需求的增長,己二腈(Adiponitrile, ADN)作為尼龍產業的上游原料,其需求也在不斷增長,但其生產技術被少數已開發國家掌握。目前國內己二腈處於嚴重依賴國外進口的情況,因此,對己二腈合成方法的研究顯得非常重要。丙烯腈(Acrylonitrile, AN)電解是合成己二腈的主要方法之一,其所用原料丙烯腈毒性小,且只需一步反應即可得到己二腈,在技術上相對容易改善及研究。
本研究參考使用現有電解液組成下,先以電化學阻抗分析法探討各主要成份在還原反應時對於電極表面行為的影響,再針對關鍵添加物—四級銨鹽(TMAH、TEAH、TPAH、MBAP、TBAP),探討碳鏈長度與添加濃度的吸附特性,最後於無隔膜攪拌式批式反應槽中電解合成己二腈,探討碳鏈長度與添加濃度對於己二腈選擇率與電流效率的影響,並以此結果估算連續式反應條件下的己二腈選擇率與電流效率。
結果顯示反應物丙烯腈、四級銨鹽與己二腈會被吸附在電極表面;乙二胺四乙酸(EDTA)則無明顯吸附現象。而不同碳鏈長度的四級銨鹽具有相異的吸附特性,MBAP和TBAP吸附層在較廣的電位範圍下維持結構。經由計算,碳鏈越長的四級銨鹽於電極表面的吸附層層數越多,並且四級銨鹽的濃度從20 mM提高到40 mM皆會增加其在電極表面的吸附量。
於低有機相比例的電解液中,碳鏈較長的四級銨鹽抑制電極產生氫氣的還原電流程度較大,可能是因其吸附層數較多且疏水性較強,同時可能也因親油性較強以及離子直徑較大而吸附層較不緊密,使丙烯腈較易擴散到達電極表面還原,其中以添加TBAP時,效果最為顯著。將四級銨鹽從20 mM提高到40 mM,抑制產氫還原電流程度提高,同時也可能因此使電極表面反應物丙烯腈度更高,有效促進丙烯腈的還原反應,其中以提高TPAH添加濃度有最明顯的濃度效應。
批式定電流電解結果顯示四級銨鹽的碳鏈越長,目標產物己二腈的選擇率與電流效率越高。增加四級銨鹽的濃度,會增加己二腈或三聚物的選擇率,明顯降低丙腈選擇率。當添加的四級銨鹽為20 mM TBAP時,有最高的己二腈選擇率與己二腈電流效率。
將批式定電流電解結果模擬連續式反應條件,結果顯示添加20 mM MBAP時,其己二腈選擇率為78.3 %、己二腈電流效率為75.5 %;添加20 mM TBAP時,己二腈選擇率為85.4 %、己二腈電流效率為83.7 %。
Recently, with the increment of the needs of nylon, the demands of the key raw material, adiponitrile (ADN), also increase, whose production technology has been controlled by developed countries. In Taiwan, ADN strongly relies on the import from foreigner countries now, so the researches of synthesis of ADN are much important obviously. Electrosynthesis of ADN from acrylonitrile (AN) is a one-step reaction, and the toxicity of acrylonitrile is low. Therefore, the production technology is developed and researched comparatively easier.
In this study, the influences of each component in the existing electrolyte on the electrode surface behavior during the reduction reaction were investigated with Electrochemical Impedance Spectroscopy. And the adsorption characteristics of quaternary ammonium salts (QASs) with different carbon chain lengths and added concentrations were investigated. Finally, the ADN was electrosynthesized in an stirring batch cell without diaphragm to investigate the effect of carbon chain lengths and concentrations of QASs on the selectivity and current efficiency of ADN. The results of batch reaction were used to estimate the selectivity and current efficiency of ADN under continuous reaction conditions.
The results showed that AN, QASs and ADN did be adsorbed on the surface of the electrode; ethylenediaminetetraacetic acid (EDTA) did not. The QASs with different carbon chain length have different adsorption characteristics, and the adsorption layers of MBAP and TBAP can maintain the adsorption layer structure over a wider range of potentials. It is calculated that the longer the carbon chain in QAS, the more the number of average adsorption layers on the electrode surface, and that increasing the concentration of the QASs increased the adsorption amount on the electrode surface.
With low organic concentration in an electrolyte, the QAS with longer carbon chain decreased hydrogen evolution reduction current more significantly probably because of larger number of adsorption layers and higher hydrophobicity. Furthermore, probably because the QAS with longer carbon chain had stronger lipophilicity and larger ion diameter to form larger interspacing in the adsorption layer, AN was easier to diffuse to electrode surface for reduction reaction. The effect was most significant with TBAP. Increasing the concentration of the QASs from 20 mM to 40 mM enhanced the decrease in hydrogen evolution reaction current, and probably then increased the concentration of AN on the electrode surface, thereby effectively promoted the reduction reaction of AN. Higher concentration of TPAH was most effectively.
The results of electrosynthesis in batch reactor showed that the QAS with longer carbon chain gave higher selectivity and current efficiency of ADN. Increasing the concentration of the QASs increased the selectivity of ADN or trimer, and decreased the selectivity of propionitrile significantly. When adding 20 mM TBAP, there is the highest ADN selectivity and ADN current efficiency.
The estimation for a continuous reaction condition from the batch reactor reaction showed that the ADN selectivity and current efficiency were 78.3 % and 75.5 % respectively with 20 mM MBAP; the ADN selectivity and current efficiency were 85.4 % and 83.7 % respectively with 20 mM TBAP.
[1] 林賜岱, "直接甲醇燃料電池陽極反應之研究," 2002.
[2] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
[3] H. Strathmann, Ion-exchange membrane separation processes. Elsevier, 2004.
[4] Fischer, R. H., Baumann, R., Wloka, V., & Luyken, H. (2018). U.S. Patent No. 9,890,113. Washington, DC: U.S. Patent and Trademark Office.
[5] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications. wiley New York, 1980.
[6] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
[7] G. Liu, M. Ozores-Hampton, G. McAvoy, B. Hogue, and C. A Snodgrass, Application of Surfactants in Commercial Crop Production for Water and Nutrient Management in Sandy Soil. 2013.
[8] 陳曉鳴, 陳玉婷, and 申永輝, "綠色供應鏈管理系統模型之建立與研究-以台灣紡織成衣產業爲例," 臺南科大學報 (人文管理), no. 27, pp. 281-292, 2008.
[9] A. J. Fry, "Organic Electrochemistry as a Community," Electrochemical Society Interface, p. 29, 2009.
[10] Burk, M. J., Burgard, A. P., Osterhout, R. E., & Pharkya, P. (2013). U.S. Patent No. 8,377,680. Washington, DC: U.S. Patent and Trademark Office.
[11] R. P. Adams and O. D. Sparkman, "Review of Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry," J Am Soc Mass Spectrom, 18, 803-806, 2007.
[12] C. Vauleugenhaghe, G. Valensi, and M. Pourbaix, "Atlas of Electrochemical Equilibrium in Aqueous Solutions," Atlas of Electrochemical Equilibrium in Aqueous Solutions, 1974.
[13] H.-P. Lin and C.-Y. Mou, "Structural and morphological control of cationic surfactant-templated mesoporous silica," Accounts of chemical research, 35(11), 927-935, 2002.
[14] K. Shinoda and H. Saito, "The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method," J. Colloid Interface Sci, 30(2), 258-263, 1969.
[15] W. Xia, A. Mahmood, Z. Liang, R. Zou, and S. Guo, "Earth‐Abundant Nanomaterials for Oxygen Reduction," Angewandte Chemie International Edition, 55(8), 2650-2676, 2016.
[16] K. Scott, B. Hayati, A. N. Haines, and I. F. McConvey, "A reaction model for the electrochemical synthesis of adipontrile," Chemical Engineering & Technology, 13(1), 376-383, 1990.
[17] F. Medina, P. Salagre, J. Sueiras, and J. Fierro, "Activity and XRD phase identification of several nickel catalysts for adiponitrile hydrogenation," Journal of molecular catalysis, 68(2), L17-L20, 1991.
[18] F. Karimi, F. Mohammadi, and S. Ashrafizadeh, "An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile," Journal of The Electrochemical Society, 158(12), E129-E135, 2011.
[19] 秦偉程, "丙烯腈生產現狀與發展趨勢," 四川化工與腐蝕控制, 5(4), 53-57, 2002.
[20] S. Che et al., "A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure," Nature materials, 2(12), 801, 2003.
[21] L. Pilon, H. Wang, and A. d’Entremont, "Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors," Journal of The Electrochemical Society, 162(5), A5158-A5178, 2015.
[22] 屠廣華, "己二腈市場及其原料路線分析," 化學工業, 12, 26-30, 2013.
[23] 劉揚, "己二腈的生產現狀及市場分析," 河南化工, 5, 30-32, 2010.
[24] 卓淑珍, "國內紡織業者的關鍵成功因素-以尼龍 66 紡絲業為例," 國立台北科技大學, 2010.
[25] 許宗禮 and 曾清枝, "紡織業競爭發展策略之探討: 以短纖織布業為例," 大葉大學企業管理學系碩士班, 2010.
[26] 山田, "中國和台灣兩大尼龍製造商增加設備投入," 合成纖維, 35(10), 56-57, 2006.
[27] 李金朋, "己二腈生產技術現況及市場趨勢分析," 河北化工, 35(2), 34-36, 2012.
[28] 劉啟波, 霍光飛, 佟健, and 胡曉寧, "由丁二烯合成己二腈及己二胺的技術發展現況," 化工進展, 28(5), 832-835, 2009.
[29] B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, and R. Vasquez-Medrano, "Organic electrosynthesis: a promising green methodology in organic chemistry," Green Chemistry, 12(12), 2099-2119, 2010.
[30] 李偉善, "有機電合成概述," 廣州化工,4, 007, 1990.
[31] 馬淳安, 有機電化學合成導論. 科學出版社, 2002.
[32] 謝自強, "有機電合成發展應用," 杭州化工, 36(2), 1-4, 2006.
[33] 王歡 and 陸嘉星, "有機電化學合成簡談," 電化學, 17(4), 366-372, 2011.
[34] T. Fuchigami, M. Atobe, and S. Inagi, Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. John Wiley & Sons, 2014.
[35] A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews, 90(5), 837-865, 1990.
[36] H. J. Schäfer, "Contributions of organic electrosynthesis to green chemistry," Comptes Rendus Chimie, 14(7-8), 745-765, 2011.
[37] S. Laha, Z. Liu, D. A. Edwards, and R. G. Luthy, "Surfactant solubilization of phenanthrene in soil-aqueous systems and its effects on biomineralization," Advances in chemistry series (USA), 1995.
[38] D. Alli, S. Bolton, and N. G. Gaylord, "Hydroxypropylmethylcellulose–anionic surfactant interactions in aqueous systems," Journal of applied polymer science, vol. 42, no. 4, pp. 947-956, 1991.
[39] A. Carlsson, G. Karlström, and B. Lindman, "Thermal gelation of nonionic cellulose ethers and ionic surfactants in water," Colloids and Surfaces, 47, 147-165, 1990.
[40] E. D. Goddard, "Polymer/Surfactant Interaction: Manifestations, Methods, and Mechanisms," in Principles of Polymer Science and Technology in Cosmetics and Personal Care: CRC Press, 1999, pp. 128-195.
[41] 張豐志, 應用高分子手冊. 五南圖書出版股份有限公司, 2003.
[42] 陳文珊, "四級銨鹽對聚 (N-乙烯吡咯烷酮) 與十二烷基硫酸鈉交互作用影響之研究: 四級銨鹽碳鏈長度的影響," 成功大學化學工程學系碩士學位論文, pp. 1-79, 2011.
[43] D. Rubingh, Cationic surfactants: physical chemistry. CRC Press, 1990.
[44] 曹恒光 and 連大成, "淺談微乳液," 物理雙月刊, 23(4), 488-493, 2001.
[45] W. C. Griffin, "Classification of surface-active agents by" HLB"," J. Soc. Cosmet. Chem., 1, 311-326, 1949.
[46] J. Davies, "A quantitative kinetic theory of emulsion type. I. Physical chemistry of the emulsifying agent," Proc. 2nd Intern. Congr. Surface Activity, Butterworths Scientific Publication, London, 426, 1957.
[47] D. Kwaśniewska, D. Wieczorek, and R. Zieliński, "Water Number of Selected Surfactants," CURRENT TRENDS IN COMMODITY SCIENCE, 62.
[48] 朱雲峰, 溫朗友, and 宗保寧, "己二腈工業合成工藝的研究進展及原子經濟量化分析," 2015.
[49] A. Castellan, J. C. J. Bart, and S. Cavallaro, "Industrial production and use of adipic acid," Catalysis Today, 9(3), 237-254, 1991.
[50] N. L. Morrow, "The industrial production and use of 1, 3-butadiene," Environmental health perspectives,86, 7, 1990.
[51] L. Bini, C. Müller, and D. Vogt, "Ligand development in the Ni-catalyzed hydrocyanation of alkenes," Chemical Communications, 46(44), 8325-8334, 2010.
[52] Haderlein, G., Aechtner, T., Leitner, A., Luyken, H., Pfab, P., Scheidel, J., ... & Genger, T. (2011). U.S. Patent No. 8,058,466. Washington, DC: U.S. Patent and Trademark Office.
[53] Achhammer, G., Bassler, P., Fischer, R., Fuchs, E., Luyken, H., Schnurr, W., ... & Hilprecht, L. (2000). U.S. Patent No. 6,147,208. Washington, DC: U.S. Patent and Trademark Office.
[54] Y. Knunyants and N. Vyazankin, "Hydrodimerization of acrylonitrile," Russian Chemical Bulletin, 6(2), 253-256, 1957.
[55] M. M. Baizer, "Electrolytic Reductive Coupling I. Acrylonitrile," Journal of The Electrochemical Society, 111(2), 215-222, 1964.
[56] D. Danly, "Discovery, Development and Commercialization of the Electrochemical Adiponitrile Process-armstrong lecture. 2," ed: SOC CHEMICAL INDUSTRY 14 BELGRAVE SQUARE, LONDON, ENGLAND SW1X 8PS, 1979.
[57] Baizer, M. M., Campbell, C. R., Fariss, R. H., & Robert, J. (1965). U.S. Patent No. 3,193,480. Washington, DC: U.S. Patent and Trademark Office.
[58] F. Beck, "Electrosynthesis of adiponitrile in undivided cells," Journal of Applied Electrochemistry, 2(1), 59-69, 1972.
[59] K. Nakagawa and Y. Nagamori, "Method for producing adiponitrile," ed: Google Patents, 1988.
[60] 馮柏成 and 王光信, "型穩態陽極在電合成己二腈中的應用," 化工學報, 61(S1), 68-71, 2010.
[61] Campbell, C. R., & Robert, J. (1966). U.S. Patent No. 3,267,131. Washington, DC: U.S. Patent and Trademark Office.
[62] C. Costentin and J.-M. Savéant, "Dimerization of electrochemically generated ion radicals: mechanisms and reactivity factors," Journal of Electroanalytical Chemistry, 564, 99-113, 2004.
[63] K. Scott and B. Hayati, "The influence of mass transfer on the electrochemical synthesis of adiponitrile," Chemical Engineering and Processing: Process Intensification, 32(4), 253-260, 1993.
[64] S. N. Bhadani, Q. Ansari, and S. K. S. Gupta, "Electrochemical polymerization of acrylonitrile with quaternary salts," Journal of applied polymer science, 44(1), 121-126, 1992.
[65] K. Scott, I. McConvey, and J. Henderson, "Selectivity characteristics of the electrohydrodimerization of acrylonitrile," Journal of Applied Electrochemistry, 17(2), 329-339, 1987.
[66] A. Haines, I. McConvey, and K. Scott, "An interpretation of kinetics in the electrohydrodimerization of acrylonitrile to adiponitrile," Electrochimica acta, 30(3), 291-300, 1985.
[67] P. J. Kinlen and C. King, "Mechanistic studies of the electrohydrodimerization of acrylonitrile," Journal of electroanalytical chemistry and interfacial electrochemistry, 304(1-2), 133-151, 1991.
[68] G. Piccardi, L. Nucci, F. Pergola, and R. Guidelli, "Mechanism of electrohydrodimerization of acrylonitrile on mercury from aqueous solutions," Journal of electroanalytical chemistry and interfacial electrochemistry, 164(1), 145-166, 1984.
[69] B. Tae, J. Lee, and Y. Park, "A study on synthesis of adiponitrile by electrohydrodimerization," J. Korean Ind. Eng. Chem, 6, 834-841, 1995.
[70] D. Danly, "The electrochemical route to adiponitrile," Chemtech, 10(5), 302-311, 1980.
[71] M. Watson, D. Pletcher, and D. W. Sopher, "A microelectrode study of competing electrode reactions in the commercial process for the hydrodimerization of acrylonitrile to adiponitrile," Journal of the Electrochemical Society, 147(10), 3751-3758, 2000.
[72] F. Karimi, S. Ashrafizadeh, and F. Mohammadi, "Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte," Chemical Engineering Journal, 183, 402-407, 2012.
[73] 馬源, 禹保衛, and 張海岩, "己二腈生產工藝比較," 河南化工, 24(8), 4-6, 2007.
[74] D. C. Grahame, "The electrical double layer and the theory of electrocapillarity," Chemical reviews, 41(3), 441-501, 1947.
[75] C. H. Hamann, A. Hamnett, and W. Vielstich, "Electrochemistry. 1998," Wiley-VCH, 1998.
[76] M. Gouy, "Sur la constitution de la charge électrique à la surface d'un électrolyte," J. Phys. Theor. Appl., 9(1), 457-468, 1910.
[77] D. L. Chapman, "LI. A contribution to the theory of electrocapillarity," The London, Edinburgh, and Dublin philosophical magazine and journal of science, 25(148), 475-481, 1913.
[78] O. Stern, "Zur theorie der elektrolytischen doppelschicht," Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30(21-22), 508-516, 1924.
[79] C. P. Smith and H. S. White, "Theory of the voltammetric response of electrodes of submicron dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte," Analytical Chemistry, 65(23), 3343-3353, 1993.
[80] K. B. Oldham and A. M. Bond, "How valid is the electroneutrality approximation in the theory of steady-state voltammetry.," Journal of Electroanalytical Chemistry, 508(1-2), 28-40, 2001.
[81] J. Newman and K. E. Thomas-Alyea, Electrochemical systems. John Wiley & Sons, 2012.
[82] C. Brett and A. M. Oliveira Brett, Electrochemistry: principles, methods, and applications (no. 544.6 BRE). 1993.
[83] D. L. Pavia, Introduction to organic laboratory techniques: Chemistry 36, Stanford University. 2006.
[84] K. Grob, "Carrier Gases for GC," Restek Advantage, 3, 1997.
[85] Schug, K. A., Sawicki, I., Carlton Jr, D. D., Fan, H., McNair, H. M., Nimmo, J. P., & Harrison, D. (2014). Vacuum ultraviolet detector for gas chromatography. Analytical chemistry, 86(16), 8329-8335.
[86] R. L. Grob and E. F. Barry, Modern practice of gas chromatography. John Wiley & Sons, 2004.
[87] S. Maduskar et al., "Quantitative carbon detector (QCD) for calibration-free, high-resolution characterization of complex mixtures," Lab on a chip, vol. 15, no. 2, pp. 440-447, 2015.
[88] Lester, J. J. H., & Stewart, J. S. (1975). U.S. Patent No. 3,898,140. Washington, DC: U.S. Patent and Trademark Office.
[89] 顔子謙, "己二腈之電化學合成硏究," National Taiwan University Graduate Institute of Chemical Engineering, 1998.
[90] E. A. El Aal, "Cyclic voltammetric behavior of the lead electrode in sodium sulfate solutions," Journal of power sources, 102(1-2), 233-241, 2001.
[91] J. B. Hayter and R. J. Hunter, "Adsorption of quaternary ammonium ions at the mercury-solution interface: Part I. The integral capacity and the structure of the adsorbed film," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 37(1), 71-80, 1972.
[92] H. Davis and O. Wiedeman, "Physical Properties of Acrylonitrile," Industrial & Engineering Chemistry, 37(5), 482-485, 1945.
[93] J. D. LAMB, A. Y. NAZARENKO, and R. J. HANSEN, "Novel solvent system for metal ion separation: Improved solvent extraction of strontium (II) and lead (II) as dicyclohexano-18-crown-6 complexes," Separation science and technology, 34(13), 2583-2599, 1999.
[94] J. Wyman Jr, "Polarization and dielectric constant of liquids," Journal of the American Chemical Society, 58(8), 1482-1486, 1936.
[95] G. I. Anyatonwu and B. E. Ehrlich, "Organic cation permeation through the channel formed by polycystin-2," Journal of Biological Chemistry, 280(33), 29488-29493, 2005.
[96] G. T. Koide and E. L. Carstensen, "Dielectric properties of quaternary ammonium salt hydrates," The Journal of Physical Chemistry, 76(14), 1999-2005, 1972.
[97] 李佩玲. (2004). 四丁基銨鹽水溶液之電導, 離子締合與成分活性係數研究 (Doctoral dissertation, 撰者).