| 研究生: |
張繼元 Chang, Chi-Yuan |
|---|---|
| 論文名稱: |
具有表面硫化披覆結構之砷化鎵系列異質接面雙極性電晶體之研製 Fabrication of GaAs-Based Heterojunction Bipolar Transistors (HBTs) with Surface Sulfur Passivation |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 硫化處理 、表面複合電流 |
| 外文關鍵詞: | surface recombination velocity, sulfur treatment |
| 相關次數: | 點閱:101 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以III-V族材料系統為基礎的異質接面雙極性電晶體由於具有絕佳的高速效能及微波特性再加上高電流驅動能力,因此,在數位及微波應用上極具發展潛力。
另一方面,III-V族材料因具有高密度的表面態位密度及較大的表面複合電流,因此,若要研製具有較佳特性的光電元件便要對表面鈍化層做一謹慎的探討。表面自然形成的氧化層缺陷會衰減少數載子元件的特性及穩定度,例如:異質接面雙極性電晶體等元件。本論文中,我們對射極、基極和集極表面作硫化處理,使元件表面形成一硫化物鈍化層並提升元件特性。由於此鈍化層的使用,可有效的減少表面複合電流和表面態位密度,並改善元件的直流特性;包括元件可在極低的集極電流(IC10-11A)下操作,並減少射-集補償電壓和射極幾何面積的影響;除此之外,在高溫的環境下,具有硫化物鈍化層的元件具有較高的直流電流增益及及較佳的溫度穩定度。
此外,我們將基極表面做硫化處理,射極、基極和集極表面做硫化處理以及未硫化處理三種元件作一完整的比較與探討;從實驗結果可知,經過硫化處理的元件,對於直流及高頻特性上都有顯著的改善。
For III-V material system, the surface passivation is a crucial processing step for fabricating high-performance electronic and optoelectronic devices due to the high-density surface states and large surface recombination velocity. These defects produced by native surface oxides are known to degrade the performance and reliability of minority carrier devices, such as HBTs. In the first part of this thesis, the sulfur treatment on emitter, base, and collector surfaces of an InGaP/GaAs HBT is employed to develop the surface passivation and improve the device performance. This can enhance the device performances through the reduction of the surface recombination velocity and surface state density. The device with sulfur treatment can be operated under ultra low collector current regimes (IC10-11A). Furthermore, the collector-emitter offset voltage and impact of emitter size effect are reduced by sulfur treatment. Moreover, as the temperature is increased, the device with sulfur treatment will exhibit higher DC current gain and more stable temperature-dependent performances. This will extend the application regimes of the studied device in low-power and communication systems.
On the other hand, we investigate the characteristics of devices with and without sulfur treatment on the emitter, base and collector surfaces. Apparently, the DC and microwave characteristics of the studied devices are improved by sulfur treatment.
[1] T. C., S. B., and K. C. H., “High DC current gain InGaP/GaAs HBTs grown by LP-MOCVD,’’ IEE Electron Lett., vol. 36, pp. 1885-1886, 2000.
[2] Y. F. Y., C. C. H., E. S. Y., “A InGaP/GaAs HBT with a selective buried sub-collector layer grown by MOCVD,” IEEE Device Research Conference, pp. 34-35, 1996.
[3] H. S., T. I., Y. M., H. O., O. U., T. F., “Ultrahigh fT and fmax new self-alignment InP/InGaAs HBTs with a highly Be-doped base layer grown by ALE/MOCVD,” IEEE Electron Device Letters, vol. 16, pp. 55-57, 1995.
[4] H. S., J. H. S., Y. S. K., “Monolithic integration of AlGaAs/GaAs HBT and GaAs junction-gate floated electron channel field effect transistor using selective MOCVD growth,” IEEE, Microwave and Guided Wave Letters, vol. 9, pp. 317-319, 1996.
[5] Y. F. Y., C. C. H., E. S. Y., Y. K. C., “Comparison of GaInP/GaAs heterostructure-emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Electron Devices, vol. 42, pp. 1210-1215, 1995.
[6] D. C., S. H., D. P., “First InP/InGaAs PNP HBT grown by metal organic chemical vapor deposition,” IEEE International Conference On Indium Phosphide and Related Materials, pp. 224-227, 2001.
[7] R. E. W., N. P., D. P. V., M. A. K., I. T., J. G. M., G. E. S., “High gain AlGaAs/GaAs HBTs grown by MOCVD,” IEEE International Symposium on Compound Semiconductors, pp. 451-454, 1997.
[8] D. L., K. L., W. X. N., Y. H., J. Z., Z. Z., S. X. G. H., L. G., “Comparison between MBE-based SiGe/Si HBT and Si-based bipolar transistor technologies,” IEEE Proceedings 6th International Conference on Solid-State and Integrated-Circuit Technology, vol. 1, pp. 621-623, 2001.
[9] T. S. S. and A. G. M., “Consideration of the frequency performance potential of GaAs homojunction and heterojuction n-p-n transistors,” IEEE Trans. Electron Devices, vol. ED-30, p. 1289, 1983.
[10] T. I. and Y. Y., “A possible near-ballistic collection in an AlGaAs/GaAs HBT a modified collector structure,” IEEE Trans. Electron Devices, vol. ED-35, p. 401, 1988.
[11] J. I. S., C. C., K-B C. and W. P. H., “InGaP/GaAs double heterojunction bipolar transistors with fT, fmax, and breakdown voltage,” IEEE Electron Devices Lett., vol. EDL-15, p. 10, 1994.
[12] M. R., B. W., H. J., “Sub-fT gain resonance of InP/InGaAs HBTs,” IEEE Trans. Electron Devices, vol. 29, pp. 213-220, 2002.
[13] P. A. H., “High-frequency heterojunction bipolar transistor device design and technology,” Electronics & Communication Engineering Journal, vol. 12, pp. 220-228, 2000.
[14] H. K., “Heterojunction Bipolar Transistors: What Should We Build?” J. Vac. Sci. Technol., vol. B1, pp. 126-130, 1983.
[15] S. S. L and C. C. W, “High-Current-Gain, Small-Offset-Voltage In0.49Ga0.51P/GaAs Tunneling Emitter Bipolar Transistors Grown by Gas-Source Molecular Beam Epitaxy,” IEEE Electron Devices Lett., vol. EDL-13, pp. 468-470, 1992.
[16] H. K., “Heterostructure Bipolar Transistors and Integrated Circuits,” IEEE Proc., vol. 70, pp. 13-25, 1982.
[17] H. H. L. and S. C. L., “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
[18] W. C. L., and W. S. L., “An Improved Heterostructure-Emitter Bipolar Transistor (HEBT),” IEEE Electron Devices Lett., vol. 12 No. 9, pp. 474-476, 1991.
[19] W. C. L., S. Y. C., H. J. P., J. Y. C., W. C. W., S. C. F., and K. H. Y., “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistors (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, pp. 1155-1161, 1999.
[20] K. B. T., J. H. T., W. C. L., and W. S. L., “Characteristics of functional Heterostructure-Emitter Bipolar Transistor (HEBTs),” Solid-St. Electron., vol. 39, pp. 1137-1142, 1996.
[21] W. S. L., W. C. L., D. F. G., and R. C. L., “Modeling the DC performance of heterostructure-emitter bipolar transistor,” Jan. J. Appl. Phys., vol. 31, pp. 2388-2393, 1992.
[22] D. F. G., W. C. Y., W. S. L., W. C. H., and W. C. L., “Regenerative switching phenomenon of a GaAs metal-n-δ(p+)-n-n+ structure,” Jan. J. Appl. Phys., vol. 32, pp. L1011-L1013, 1993.
[23] W. C. L., J. H. T., L. W. L., C. Z. W., K. B. T., W. S. L., and D. F. G., “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattice and Microstructures, vol. 17, pp. 445-456, 1995.
[24] U. E., P. E., and K. S., “Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure,” IEEE Photon. Technol. Lett., vol. 11, p. 403, 1999.
[25] H. W., K. W. C., L. T. T., J. C. C., T. R. B., E. W. L., G. S. D., A. K. O., D. C. S., B. R. A., “Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid State Circuits, vol. 31, p. 1419, 1996.
[26] P. F., Z. X., I. V., J. S., P. B., “Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides,” IEEE Trans. Electron Devices, vol. 43, p. 373, 1996.
[27] H. K., “Theory of a wide-gap emitter for transistors,” Proc. IRE p.1535, 1957.
[28] S. B., T. J. R., and G. T. W., “The heterojunction transistor and the space charge limited triode,” B. J. Appl. Phys. vol. 16, p. 33, 1965.
[29] W. P. D., J. M. W., and V. L. R., “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron. vol. 15, p.12, 1972.
[30] H. K., “Heterostructure bipolar transistors and integrated circuits,” IEEE Proc., vol. 70, p.13, 1982.
[31] M. J. M. and H. K., “Heterostructure bipolar transistor using a InGaP emitter on s GaAs base, grown by molecular beam epitaxy,” IEEE Electron Devices lett., vol. EDL-6, p. 175, 1985.
[32] S. L. D., M. A. F. P., H. B., C. B., E. C., and P. C., “First microwave characterization of LP-MOCVD grown InGaAs/GaAs self-aligned HBT,” IEE Electron Lett., vol. 27, p. 253, 1991.
[33] R. D., Z. H. L., S. C., W. R. M., S. L., P. J. P., and S. P. M., “Passivation of InGaAs surfaces and InGaAs/InP heterojunction biploar transistor by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
[34] W. S. L., W. C. L., D. F. G., and R. C. L., “Modeling the DC performance of hetrostructure-emitter bipolar transistor,” Jpn. J. Appl. phys., vol. 31, pp. 2388-2393, 1992.
[35] K. B. T., J. H. T., W. C. L., and W. S. L., “Characteristics of functional heterostructure-emitter bipolar transistor (HEBT‘s),” Solid-State Electron., vol. 39, pp. 1137-1142, 1996.
[36] W. C. L., S. Y. C., H. J. P., J. Y. C., W. C. W., S. C. F., and K. H Y., “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, pp. 1155-1161, 1999.
[37] P. C. C., P. M. S., K. H. G. D., and J. C. M. H., “60-GHz GaAs low-noise MESFET’s by molecular-beam epitaxy,” IEEE Trans. Electron Devices, vol. 33, pp. 1852-1857, 1986.
[38] W. S. L., W. C. L., J. H. T., and L. W. L., “High-performance camel-gate field effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[39] W. S. L., J. H. T., W. C. L., and L. W. L., “Influence of channel doping-profile on camel-gate field-effect transistor,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[40] W. S. L., W. L. C., S. T. Y., and W. C. L., “Improved breakdown in n+-GaAs/(p+)-GaInP/n-GaAs camel-gate heterojunction-FET grown by LP-MOCVD,” IEE Electron Lett., vol. 34, pp. 814-815, 1998.
[41] W. L. C., S. Y. C., Y. H. S., H. J. P., W. S. L., and W. C. L., “On the n+-GaAs/(p+)-GaInP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
[42] W. C. L., W. L. C., W. S. L., H. J. P., W. C. W., J. Y. C., K. H. Y., and S. C. F., “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, pp. 548-550, 1999.
[43] W. C. L., W. L. C., W. S. L., S. Y. C., Y. H. S., J. Y. C., W. C. W., and H. J. P., “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[44] W. L., Handbook of III-V heterojunction bipolar transistors, Wiley, New York.
[45] C. D., F. P., S. J., G. L., J. D., C. D. C., “Excess noise in AlGaAs/GaAs heterojunction bipolar transistors and associated TLM test structures, ”IEEE Transactions on Electron Devices, vol. 41, pp. 2000-2005, 1994.
[46] L. G., “Statistical modeling of transmission line model test structures-Part I. The effect of inhomogeneities on the extracted contact parameters,” IEEE Transactions on Electron Devices, vol. 37, pp. 2350-2360, 1990.
[47] H. J. U., D. B. J., K. J. W., “Error analysis leading to design criteria for transmission line model characterization of ohmic contacts,” IEEE Transactions on Electron Devices, vol. 48, pp. 758-766, 2001.
[48] W. S. L., W. L. C., Y. M. S., and W. C. L., “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
[49] A. Y. C. and H. C. C., “GaAs-AlxGa1-xAs double-heterostructure lasers prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 25, pp. 288-290, 1974..
[50] W. T. T., “Very low current threshold GaAs-AlxGa1-xAs double-heterostructure lasers grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 36, pp. 11-14, 1980.
[51] J. R. L., J. M. K., F. R., and S. J. P., “Plasma and wet chemical etching of In0.5Ga0.5P,” J. Electron. Mater., vol. 21, p. 441, 1992.
[52] M. T., D. G. B., A. K., E. J. R., K. Y. C., and I. A., “A Comparative study of wet and dry selective etching processes for GaAs/AlGaAs/InGaAs pseudomorphic MODFETs,” J. Electron. Mater., vol. 21, p. 9, 1992.
[53] M. T. F., D. A. A., Q. J. H., D. W. B., M. S. H., A. Y., M. F., and G. E. S., “Manufacturable fabrication process for self-aligned, thin-base InGaP/GaAs HBTs,” 1996 Interational Conference on GaAs Manufacturing Technology, San Diego, 1996.
[54] M. T. F., D. A. A., Q. J. H., P. J. M., M. F., and G. E. S., “Manufacturable self-aligned InGaP/GaAs HBTs fabricated using a citric acid-based etch,” 1995 U.S. Conference on GaAs Manufacturing Technology, New Orleans, L.A., 1995.
[55] M. T. F., D. A. A., Q. J. H., and G. E. S., “Optimization of the emitter contacting layer for manufacturable self-aligned InGaP/GaAs HBTs,” 1994 U.S. Conference on GaAs Manufacturing Technology, Las Vegas, N.V., 1994.
[56] W. C. L., J. H. T., W. S. L., L. W. L., K. B. T. and C. Z. W., “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 520-525, 1997.
[57] B. J. S., C. J. S., E. T., and T. G., “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
[58] R. L., R. R. C., and D. L. L., “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[59] L. G. and R. A. B., “Photoluminescence and x-ray photoelectron spectroscopy study of S-passivated InGaAs(001),” J. Appl. Phys., vol. 80, pp. 3076-3082, 1996.
[60] W. L., “Handbook of III-V Heterojunction Bipolar transistors,” John Wiley & Sons, New York, pp. 142-152, 1998.
[61] C. J. S., R. N. N., J. C. B., and R. B., “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
[62] J. R. M. and G. P. A., “Lateral spatial effects of feedback in gain-guided and broad-area semiconductor lasers,” IEEE J. Quantum Electron., vol. 32, pp. 1630-1635, 1996.
[63] C. C. W., M. W. K., and G. W. W., “Solid source molecular epitaxy of low threshold strain layer 1.3m InAsP/InGaAsP laser,” IEE Electron Lett., vol. 32, pp.1674-1675, 1996.
[64] D. F. G., W. C. Y., W. S. L., W. C. H., and W. C. L., “Regenerative switching phenomenon of a GaAs metal-n-(p+)-n-n+ structure,” Jpn. J. Appl. Phys., vol. 32, pp. L1011-L1013, 1993.
[65] D. F. G., S. R. Y., J. T. L. and W. C. L., “Characteristics of a GaAs Metal-n+--(p+)--n+ Switch,” Solid-St. Electron., vol. 37, pp. 223-229, 1994.
[66] D. F. G., C. C. C., K. W. L., W. C. L., and W. L., “A multiple-differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, pp. 4185-4187, 1996.
[67] N. P., J. E., J. K., D. P. V., K. K., H. S., M. T. F., G. E. S., IEEE Electron Devices Lett., vol. 19, p. 115, 1998.
[68] N. L. W., B. L., F. H. C., G. J., Z. C., C. P. L., Solid-State Electron, vol. 43, p.1399, 1999.
[69] K. A. C., Microelectron. Reliab., vol. 38, p.153, 1997.
[70] S. W. T., H. R. C., W. T. C., M. Y. C. and W. S. L., “Sulfur and InGaP-Passivated Heterojunction Bipolar Transistors,” Junction Technology, 2004. IWJT '04. The Fourth International Workshop, pp. 228-231, 2004.
[71] B. J. S., C. J. S., E. T., T. G., “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol.51, pp.2022-2024, 1987.
[72] C. J. S., M. S. H., L. A. F., C. C. C., J. P. H., “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds,” Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
[73] R. L., R. R. C., and D. L. L., “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[74] E. Y., R. B., C. E. Z., T. J. G., M. A. K., “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[75] R. J. N., J. S. W., H. J. L., B. M., H. C. C., B. A. P., A. H., “Reduction of GaAs surface recombination velocity by chemical treatment,” Appl. Phys. Lett., vol. 36, pp.76-79, 1980.
[76] C. J. S., R. N. N., J. C. B., R. B., “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
[77] R. L., R. R. C., D. L. L., “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.f
[78] H. L. C., M. S. C., M. R. M., M. S. L., E. Y., T. J. G., “Surface passivation effects of As2S3 glass on self-aligned AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 57, pp. 2113-2115, 1990.
[79] Z. S. L., W. Z. C., R. Z. S., G. S. D., D. M. H., X. M. D., X. Y. H., X. W., “S2Cl2 treatment: A new sulfur passivation method of GaAs surface,” Appl. Phys. Lett., vol. 64, pp. 3425-3427, 1994.
[80] Y. D., X. M. D., X. Y. H., Y. L., and X. B. L., “Sulfur passivation of GaAs metal-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 77, pp. 3839-3841, 2000.
[81] E. D. L., F. P. Z., S. H. X., X. J. Y., P. S. X., Z. F. H., F. Q. X., and X. Y. Z., “A sulfur passivation for GaAs surface by an organic molecular, CH3CSNH2 treatment,” Appl. Phys. Lett., vol. 69, pp. 2282-2284, 1996.
[82] X. H., X.G. C., Z. L., X. D., and X. W., “Passivation of GaAs surface by sulfur glow discharge,” Appl. Phys. Lett., vol. 69, pp. 1429-1431, 1996.
[83] P. M., B. M., L. R., A. A. C., G. H., L. K., P. B., and D. A. W., “Chemical bonding and structure of the sulfur treated GaAs(111)B surface,” Appl. Phys. Lett., vol. 69, pp. 383-385, 1996.
[84] J. L. L., L. W., S. T., H. O., and Y. N., “Evidence for the passivation effect in (NH[sub 4])[sub 2]S[sub x]-treated GaAs observed by slow positrons,” Appl. Phys. Lett., vol. 58, pp. 1167-1169, 1991.
[85] E. Y., R. A. G., V. M. D., H. S. L., “GaAs surface modification by room-temperature hydrogen plasma passivation,” Appl. Phys. Lett., vol. 60, pp. 2681-2683, 1992.
[86] W. L., “Extrinsic base surface recombination current in GaInP/GaAs heterojunction bipolar transistors with near-unity ideality factor,” J. J. Appl. Phys., vol. 32, pp. 713-715, 1993.
[87] C. H. H., R. A. L., M. F. R., “The effect of surface recombination on current in AlxGa1-xAs heterojunction,” J. Appl. Phys., vol. 49, pp. 3530-3542, 1978.
[88] S. T., D. J. F., S. L. W., “Surface recombination in GaAlAs/GaAs heterostructure bipolar transistors,” J. Appl. Phys., vol. 64, pp. 5009-5012, 1998.
[89] N. H., K. H., “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT's with AlGaAs surface passivation layer,” IEEE Electron Device Letters, vol. 11, pp. 388-390, 1990.
[90] W. L. and J. S. H., J. R., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.
[91] H. K. Y., P. A. H., N. C. M. S., C. B., J. S. R., “High-temperature dc characteristics of AlXGa0.52-XIn0.48P/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy,” IEEE Trans. Electron Devices, vol. 43, pp. 2-7, 1996.
[92] Y. T. O., S. C. B., B. R. L., T. W. K., C. Y. H., S. B. P., H. K. L., and T. W. K., “Diminution of the surface states on GaAs by a sulfur treatment,” J. Appl. Phys., vol. 76, pp.1959-1961, 1994.
[93] C. J. S., M. S. H., L. A. F., C. C. C., and J. P. H., “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds,” Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
[94] Y. F. Y., C. C. H., and E. S. Y., “Surface recombination current in InGaP/GaAs heterojunction-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
[95] B. M., G. B. G., H. M., “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron, vol. 34, pp. 315-321, 1991.
[96] M. T. F., Q. J. H., G. E. S., “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol. 17, pp. 555-556, 1996.
[97] M. H., “Submicron, fully self-aligned HBT with an emitter geometry of 0.3μm,” IEEE Trans. Electron Device Lett., Vol. 18, pp. 358-360, 1997.
[98] S., L. G. S., J. R. H., R. B., R. E., and M. K., “High-speed self-aligned InP/InGaAs double heterojunction bipolar transistor with high current driving capability,” IEE Electronics Lett., Vol. 24, pp. 1293-1294, 1998.
[99] M. H., D. C. S., L. T. T., K. W. K., D. K. U., A. K. O., S. K. W., “Experimental study of AlGaAs/GaAs HBT device design for power application,” IEEE Electron Device Lett., Vol.12, No.11, pp.581-583, 1991.
[100] T. R. C., P. C. C., C. G., and N. B. C., “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration,” IEEE Photon. Technol. Lett., Vol. 5, No.1, pp. 1-3, 1993.
[101] T. F., D. A. A., P. J. M., Q. J. H., M. F., and G. E. S., “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol.16, No.12, pp.540-541, 1995.
[102] F. L., G. P., Y. N., A. F., C. C., S. S., and A. S., “A backside via holes etching technology for indium phosphide MMIC's,” International conference on Microwave and Millimeter wave technology proceedings, pp.64-67, 2000.