| 研究生: |
羅德煒 Lwo, David |
|---|---|
| 論文名稱: |
碳化矽功率元件切換頻率對馬達驅動系統性能之影響分析 Effect of SiC Device Switching Frequency on Motor Drive System Performance |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 共同指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 內藏式永磁馬達 、碳化矽 、空間向量脈波寬度調變 、切換頻率 |
| 外文關鍵詞: | IPM motor, SiC MOSFET, SVPWM, switching frequency |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主題是研究碳化矽場效電晶體元件的開關性能對馬達驅動系統的影響,並提出選擇切換頻率時需要注意的條件。提升馬達轉速有助於提高馬達功率密度,欲驅動高速馬達需要提升驅動電路的切換速度。本論文提出以空間向量脈波寬度調變造成之電流漣波作為判斷切換頻率是否足夠的條件。碳化矽元件耐高電壓及耐熱,與同功率條件之矽基元件相比,開關速度快、切換損失少。應用在馬達驅動系統的三相變頻器,使控制晶片的脈波寬度調變模組能夠提高切換頻率,增加控制器修正命令的次數及精度。擴大空間向量脈波寬度調變驅動法的頻寬,有助於強化控制轉矩,進一步抑制電流漣波。抑制脈波寬度調變命令造成之漣波,控制器可以釋放電流的保護限制,使控制命令使用到更完整的電壓範圍,重新設計更大的控制器增益值,得以提升馬達驅動系統性能。
文中以Simulink建構馬達驅動系統,模擬碳化矽元件驅動電路提升切換頻率對於控制命令之影響及馬達驅動系統性能之變化,再以新的驅動器表現更新控制器參數,使用硬體在線回路測試模擬結果。
This thesis proposes how the switching frequency of the silicon carbide field effect transistor (SiC MOSFET) affects the permanent magnet synchronous motor (PMSM) drive system. The relation between the switching frequency of the space vector pulse width modulation (SVPWM) and the current ripple of the motor is analyzed.
Based on the high-speed switching capability of SiC MOSFETs, several options are proposed when selecting the switching frequency for the driving methods that adopt SVPWM. To confirm the control response, Simulink is used to simulate the voltage source inverter (VSI) and internal permanent magnet synchronous motor (IPM) models of motor drive systems. Then, Texas Instruments' microcontroller and hardware-in-the-loop (HIL) devices are applied to validate the simulation results and the performance of the proposed method.
參考文獻
[1] B. Sarlioglu, C. T. Morris, D. Han and S. Li, “Benchmarking of electric and hybrid vehicle electric machines, power electronics, and batteries”, Proc. of 2015 Intl ACEMP., 2015 Intl Conf. OPTIM. & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, 2015, pp. 519-526.
[2] R. Togashi, Y. Inoue, S. Morimoto, and M. Sanada, “Performance improvement of ultra-high-speed PMSM drive system based on DTC by using SiC inverter”, Proc. of 2014 IPEC-Hiroshima 2014 - ECCE ASIA, Hiroshima, 2014, pp. 356-362.
[3] A. G. Sarigiannidis and A. G. Kladas, “Switching Frequency Impact on Permanent Magnet Motors Drive System for Electric Actuation Applications”, IEEE Trans. Magnetics, vol. 51, no. 3, pp. 1-4, March 2015
[4] M. van der Geest, H. Polinder, and J. A. Ferreira, “Influence of PWM switching frequency on the losses in PM machines”, Proc. of 2014 ICEM., Berlin, 2014, pp. 1243-1247.
[5] 陳柏勳, “具相位超前之無刷直流馬達無感測驅動系統”, 國立成功大學碩士論文, 2007.
[6] 王建昌, 高速永磁同步馬達驅動技術. 能源知識庫, 2013.
[7] 曹峻嘉, “運用疊代學習控制器於永磁同步馬達轉矩漣波抑制之實作”, 國立成功大學碩士論文, 2013.
[8] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples”, IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Nov.-Dec. 2012.
[9] 巫昌圜, “內藏式永磁同步馬達弱磁控制於電動機載具速度提升之探討與實現”, 國立成功大學碩士論文,2004.
[10] 張晉瑋, “應用磁電耦合分析之內藏式永磁同步馬達弱磁控制”, 國立成功大學碩士論文,2017.
[11] 陳名輝, “應用磁電耦合分析之同步磁阻馬達驅動器研製”, 國立成功大學碩士論文,2015.
[12] 楊國良, 李建雄, 永磁同步電機控制技術, 知識產權出版社, 2015.
[13] 呂怡萱, “內藏型永磁馬達直接轉矩向量控制器設計”, 國立成功大學碩士論文, 2017.
[14] M. F. Rahman, L. Zhong, W. Y. Hu, K. W. Lim and M. A. Rahman, “An investigation of direct and indirect torque controllers for PM synchronous motor drives”, Proc. of Second International Conference on Power Electronics and Drive Systems, Singapore, 1997, pp. 519-523 vol.2.
[15] H. H. Choi, H. M. Yun, and Y. Kim, "Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor", IEEE Trans. Ind. Informat., vol. 11, no. 2, pp. 540-547, Apr. 2015.
[16] M. Depenbrock, "Direct self-control (DSC) of inverter-fed induction machine", IEEE Trans. Power Electron., vol. 3, no. 4, pp. 420-429, Oct. 1988.
[17] I. Takahashi and T. Noguchi, "A new quick-response and high-efficiency control strategy of an induction motor", IEEE Trans. Ind. Appl., vol. IA-22, no. 5, pp. 820-827, Sep. 1986.
[18] Y. Hu, C. Tian, Z. You, Y. Gu, L. X. Tang, and M.F. Rnhman "In-depth research on direct torque control of permanent magnet synchronous motor," Proc. of IEEE 2002 28th Annual Conference of the Industrial Electronics Society, vol. 2, pp. 1060-1065, November, 2002.
[19] M. F. Rahman, L. Zhong and Khiang Wee Lim, “A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening”, IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1246-1253, Nov.-Dec. 1998.
[20] G. S. Buja and M. P. Kazmierkowski (2004). "Direct Torque Control of PWM Inverter-Fed AC Motors—A Survey." IEEE Trans. Ind. 51(4): 744-757.
[21] Nikolay Zheludev. The life and times of the LED — a 100-year history. Nature Photonics, 1 (4): 189–192, 2007.
[22] Yanase, Youichi & Yorozu, Naoyuki. “Superconductivity in compensated and uncompensated semiconductors.”, Science and Technology of Advanced Materials, vol. 9, 2009.
[23] Camassel, Jean & Contreras, Sylvie & Robert, Jean-Louis. “SiC materials: A semiconductor family for the next century.”, Comptes Rendus de l'Académie des Sciences - Series IV - Physics. 1. 5-21, 2000.
[24] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum semiconductors for high-power electronics”, IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1811-1823, Sept. 1989.
[25] OH. Jain, S. Rajawat, and P. Agrawal, “Comparision of wide band gap semiconductors for power electronics applications”, Proc. of 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, 2008, pp. 878-881.
[26] A. Krings, J. Soulard, and O. Wallmark, “Influence of PWM switching frequency and modulation index on the iron losses and performance of slot-less permanent magnet motors”, Proc. of 2013 ICEMS., Busan, 2013, pp. 474-479.
[27] K. Yamaguchi, K. Katsura, and T. Jikumaru, “Motor loss and temperature reduction with high switching frequency SiC-based inverters”, Proc. of 2017 IEEE 5th Workshop on WiPDA., Albuquerque, NM, 2017, pp. 127-131.
[28] D. Han, C. T. Morris, W. Lee, and B. Sarlioglu, “Comparison Between Output CM Chokes for SiC Drive Operating at 20- and 200-kHz Switching Frequencies”, IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2178-2188, May-June 2017.
[29] K. Yamaguchi, K. Katusra, and T. Jikumaru, “Motor loss reduction with high switching frequency SiC inverter”, Proc. of 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, 2017, pp. 754-757.
[30] R. Liu, C. C. Mi, and D. W. Gao, “Modeling of Eddy-Current Loss of Electrical Machines and Transformers Operated by Pulsewidth-Modulated Inverters”, IEEE Trans. Magnetics, vol. 44, no. 8, pp. 2021-2028, Aug. 2008.
[31] M. van der Geest, H. Polinder, and J. A. Ferreira, “Influence of PWM switching frequency on the losses in PM machines”, Proc. of 2014 ICEM., Berlin, 2014, pp. 1243-1247.
[32] A. Boglietti, P. Ferraris, M. Lazzari, and M. Pastorelli, “Change of the iron losses with the switching supply frequency in soft magnetic materials supplied by PWM inverter”, IEEE Trans. Magnetics, vol. 31, no. 6, pp. 4250-4252, Nov. 1995.
[33] S. Xue, J. Feng, S. Guo, Z. Chen, W. Chu, P. Xu, and Z.Q. Zhu, “Iron Loss Model for Electrical Machine Fed by Low Switching Frequency Inverter”, IEEE Trans. Magnetics, vol. 53, no. 11, pp. 1-4, Nov. 2017.