| 研究生: |
姚仲澤 Yao, Chung-Tse |
|---|---|
| 論文名稱: |
多變量前置管制圖之研究 A Study of Multivariate Pre-Control Charts |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 平均串長度 、常態轉換法 、多變量前制管制圖 |
| 外文關鍵詞: | Normal Transformation, Average Run Length, Multivariate Pre-Control charts |
| 相關次數: | 點閱:80 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計製程管制(Statistical Process Control,簡稱SPC)是監控製程品質特性的重要方法。透過管制圖(Control Charts)的監控,吾人能夠迅速地偵測出非機遇原因何時發生或是製程何時改變,再及時予以修正即可防止不良品之產生,並減少不必要的品質損失。相對於傳統之管制圖,前置管制圖著重於製程量產前製程能力的評估及量產後對製程的及時監控。
現代化的產品及其生產過程日趨複雜,一個產品或製程的品質往往取決於兩個或兩個以上彼此相關的品質特性,因此本研究乃針對品質特性服從多變量常態分配時,比較多變量前置管制圖與Hotelling 管制圖在監控製程上之表現利用平均串長度(ARL)進行評估。除了分別探討當製程處於穩定狀態下及製程發生變動時,管制方法偵測到製程異常所需之樣本數外,本研究尚利用常態轉換法,對品質特性呈非常態多變量分配下之資料作進一步之分析。
最後,我們亦提出一套修正原多變量前置管制圖之設定及監控準則的方式,可供業界參考使用。
Statistical process control (SPC) is an important tool to detect the process change and prevent the defects from occurring by identifying and eliminating assignable causes of variation. In contrast to the traditional control charts, pre-control charts focus on evaluating the process capability during the set-up stage and detecting the process change during the mass production stage.
The quality of output of a production process is often measured by the joint level of several correlated characteristics. The main purpose of this research is to compare the performance of detecting process change using multivariate pre-control charts versus Hotelling control charts when quality characteristics follow multivariate normal distributions. This can be achieved by two statistical measures known as the out of control ARL (Average Run Length) = , where is the type-II error probability (the probability of not being able to detect the change when the process mean has been shifted) as well as the in control ARL= , where is the type-I error probability (the probability of claiming the process is out-of-control when the process is actually in control). In addition, this research will utilize normal transformation to deal with the non-normal multivariate data.
Finally, this research proposes some new set-up and monitoring criteria for multivariate pre-control charts which may provide a useful reference for the industries.
1. 潘浙楠、李仁凱,「多重品質特性下製程能力指標之比較研究」,品質學報,第10卷,第1期 (2003)。
2. 連志偉,「非常態分配下前置管制圖之探討與研究」,國立成功大學統計學研究所碩士論文 (2002)。
3. Andrews, D. F., Gnanadesikan, R. and Warner, J. L.,“Transformations Of Multivariate Data,”Biometrics, Vol. 27, 825-40 (1971).
4. Box, G. E. P. and Cox, D. R.,“An Analysis of Transformations,”Journal of the Royal Statistical Society, Series B, Vol. 26, pp. 211-246 (1964).
5. Bohte, K. R.,“World Class Quality: Design of Experiments Made Easier, More Cost Effective Than SPC,”American Management Association (1988).
6. Ermer, D. C. and Roepke, J. R.,“An Analytical Analysis of Pre-control,”ASQC Quality Congress transactions. American Society for Quality Control, Milwaukee, WI, New York, pp. 522-525 (1991).
7. Gnandesikan, R., Methods for Statistical Data Analysis of Multivariate Observations, Wiley,New York, NY (1977).
8. Hotelling, H.,“Multivariate Quality Control,” Techniques of Statistical Analysis, Edited by Eisenhart, Hastay and Wallis, McGraw-Hill, New York, NY, pp. 111-184 (1947).
9. Hubele, N. F.,“A Multivariate and Stochastic Framework for Statistical Process Control,”Statistical Process Control In Automated Manufacturing, Edited by Keats, J. B. and Hubele, N. F., Marcel Dekker, New York, NY, pp.129-151 (1986).
10.Khoo, M. B. C. and Quah, S. H.,“Proposed Short Runs Multivariate Control Charts for the Process Mean,”Quality Engineering, 14(4), 603-621 (2002).
11.Ledolter, J. and Swersey, A.,“An Evaluation of Pre-Control,”Journal of Quality Technology, Vol. 29, No. 2, pp. 163-171 (1997).
12.Mackertich, N. A.,“Precontrol versus Control Charting: A Critical Comparison,”Quality Engineering, Vol. 2, pp. 253-268 (1990).
13.Rupinski, M. T. and Dunlap, W. P., Approximating Pearson Product-Moment Correlations from Kendall’s Tau and Spearman’s Rho,” Educational and Psychological Measurement, Vol. 56, No. 3, pp. 419-429 (1996).
14.Prins, J. and Mader, D.,“Multivariate Control Charts for Grouped and Individual Observations,”Quality Engineering, 10 (1), 49-57 (1997).
15.Satterthwaite, F. E.,“A Simple, Effective Process Control Method,” Report 54-1, Rath&Strong, Inc., Boston, MA (1954).
16.Shainin, D.,“Better than Good Old and R charts Asked by Vendees,” ASQC Quality Congress Transactions. American Society for Quality Control, Milwaukee, WI, pp. 302-307 (1984).
17.Traver, R. W.,“Pre-Control: A Good Alternative to and R Charts,”Quality Progress, Vol. 17, pp. 11-14 (1985).
18.Tracy, N. D., Young, J. C. and Mason, R. L., “Multivarate Control Charts for Individual Observations,”Journal of Quality Technology, Vol. 24, No. 2 (1992).
19.Taam, W., Subbaiah, P. and Liddy, J. W.,“A Note on Multivariate Capability Indices,”Journal of Applied Statistics, Vol. 20, pp. 339-351 (1993).