簡易檢索 / 詳目顯示

研究生: 黃盟誠
Huang, Meng-Chent
論文名稱: 圓柱腔體加一熱板的流場及溫度場
Flow and Heat Transfer in a Cylindrical Chamber
指導教授: 王振源
Wang, Chen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 104
中文關鍵詞: 溫度均勻性平均冷卻速率
外文關鍵詞: temperature uniformity, mean cooling rate
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體製造中有許多製程都必須在加熱結束後冷卻到一特定的溫度,才能進行下一個製程。而本研究所針對的即是氣體冷卻這個部份。本研究中所模擬的腔體為圓柱腔體,腔壁的溫度為373K,在腔體底部放一溫度1300K,直徑300mm及厚度0.7mm的圓形熱板,並且在腔體的壁上分別設一個進氣口及一個出氣口。在冷卻過程中,以氮氣做為主要的冷卻氣體,吹入腔體的氣體溫度為常溫300K。首先觀察在沒有氣體進入腔體內時的冷卻速率以及對於熱板表面溫度均勻性的影響,接著分別考慮在不同的流速,不同的熱板轉速,不同的入口高度及角度下對於熱板的影響。而所探討的為10秒內的變化。

    根據本文的結果可知,當入口流速增快時,也就是增加進入腔體的體積流率時,可以使熱板的冷卻速率增快。在流速增快到10m/s時,冷卻速率可達到9.12K/s。而且在增加熱板轉速後,經由熱板旋轉所帶動的氣流也能夠增加冷卻速率,並且能夠改善熱板的溫度均勻性。而將入口移往靠近熱板的地方也可增加冷卻速度。且經由改變氣體進入腔體的角度更可以改善熱板的溫度均勻性。

    In order to carry out next process, sometimes we must cool the products to a specific temperature after heating process in semiconductor manufacture. This paper is to aimed at gas cooling. The chamber is a cylindrical one, and the temperature of chamber wall is 373K. Then put a hot plate which temperature, diameter and thickness are 1300K, 300mm and 0.7mm in the bottom of chamber. In the wall of chamber has a inlet and a outlet. In cooling process, the main cooling gas is nitrogen, and the temperature is 300K. First we consider the situation with no cooling gas entering into the chamber, then consider the situation of different inlet velocity, different rotating speed of hot plate, different height of inlet and angle, separately. Then discuss their cooling rate and temperature uniformity of hot plate.

    From the result of this paper, we can obtain that, when increasing the inlet velocity can increase the cooling rate of hot plate. When the velocity is 10m/s, the cooling rate can reach 9.12K/s. And we also find that, when increasing the rotating speed of hot plate can increase the cooling rate, and improve the temperature uniformity. Then we move the inlet to the place near the hot plate, this can increase the cooling rate. If we change the angle of inlet, can also improve the temperature uniformity.

    摘要………………………………………………………i 英文摘要…………………………………………………ii 致謝………………………………………………………iii 目錄………………………………………………………iv 表目錄……………………………………………………vii 圖目錄……………………………………………………viii 符號表……………………………………………………xii 第1章 介紹………………………………………………1 1.1 引言………………………………………………1 1.2 文獻回顧…………………………………………2 1.3 本文概述…………………………………………4 第2章 數學模式…………………………………………6 2.1 基本假設…………………………………………6 2.2 統御方程式………………………………………7 2.2.1 連續方程式……………………………………7 2.2.2 動量方程式……………………………………7 2.2.3 能量方程式……………………………………9 2.2.4 邊界條件………………………………………10 2.3 Rayleigh-Benard convection…………………11 2.4 熱性質……………………………………………12 第3章 數值方法…………………………………………15 3.1 數值演算法………………………………………15 3.2 共軛熱傳…………………………………………17 3.3 格點分佈…………………………………………18 3.4 內部格點的數值設定……………………………18 3.5 收歛標準…………………………………………19 3.6 格點測試…………………………………………20 第4章 結果與討論………………………………………21 4.1 未加進氣體的冷卻效應…………………………21 4.1.1 傳導的影響……………………………………21 4.1.2 對流的影響……………………………………22 4.1.3 輻射的影響……………………………………23 4.2 通入氣體的效應…………………………………24 4.2.1 入口速度的影響………………………………24 4.2.2 熱板旋轉的效應………………………………27 4.2.3 入口高度的影響………………………………29 4.2.4 入口角度的影響………………………………32 第5章 結論………………………………………………34 5.1 未來工作…………………………………………35 參考文獻…………………………………………………36 附錄………………………………………………………39 表與圖……………………………………………………43 自述………………………………………………………104

    1. Chandrasekhar, S., Hydrodynamic and Hydromagmetic Stability, Oxford University Press, London, 1961.

    2. Cheng, T. C., Chiou, P. H., and Lin, T. F., “Visualization of mixed convective vortex rolls in an impinging jet flow of air through a cylindrical chamber,” Int. J. Heat Mass Transfer, Vol. 45, pp. 3357-3368, 2002.

    3. Drazin, P. G., and Reid, W. H., Hydrodynamic Stability}, Cambridge University Press, 1981.

    4. Evans, G. H., and Greif, R., “Forced flow near a heated rotating disk: A similarity solution,” Numerical Heat Transfer, Vol. 14, pp. 373-387, 1988.

    5. Ferziger, J. H., and Perie, M., Computational methods for fluid dynamics, Springer-Verlag, New York/Berlin, 1997.

    6. Gray, D. D., and Giorgini, A., “The validity of the Boussinesq approximation for liquids and gases,” Int. J. Heat Mass Transfer, Vol. 19, pp. 545-551, 1976.

    7. Huang, C. C., and Lin, T. F., “Unsteady three-dimensional mixed convective airflow over a horizontal plate,” Journal of Thermophysics and Heat Transfer, Vol. 9, No. 2, pp. 254-261, 1995.

    8. Incropera, F. P., and DeWitt, D. P, Fundamentals of Heat and Mass Transfer, 4th edition, John Wiley, New York, 1996.

    9. Kays, W. M., and Crawford, M. E., Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill, New York, 1993.

    10. Lee, M. L. and Liu, C. W., “A novel illuminator design in a rapid thermal processor,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 2, pp. 152-156, 2001.

    11. Nicolas, X., Luijkx, J. M., and Platten, J. K., “Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below,” Int. J. Heat Mass Transfer, Vol 43, pp. 589-610, 2000.

    12. Patankar, S. V., Liu, C. H., and Sparrow,E. M., “Fully developed flow and heat transfer in duct having streamwise-variations of cross-section areas,” ASME Journal of Heat Transfer, Vol. 99, pp. 180-186, 1977.

    13. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980.

    14. Shaw, H. J., “Laminar mixed convection heat transfer in three-dimensional horizontal channel with a heated bottom,” Numerical Heat Transfer, part A, Vol. 23, pp. 445-461, 1993.

    15. Touloukian, Y. S., Liely, P. E., and Saxena, S. C., Thermophysical Properties of Matter, vol. 3: Thermal Conductivity, Nonmetallic Liquids and Gases, IFI/Plenum, New York, 1970.

    16. Touloukian, Y. S., and Makita, J., Thermophysical Properties of Matter, vol. 6: Specific Heat, Nonmetallic Gases and Liquids, IFI/Plenum, New York, 1970.

    17. Touloukian, Y. S., Saxena, S. C., and Hestermasn, P., Thermophysical Properties of Matter, vol.11: Viscosity, IFI/Plenum, New York, 1970.

    18. Van Santen, H., Kleijn, C. R., and Van Den Akker, H. E. A., “Mixed convection in radial flow between horizontal plates-I. Numerical simulations,” Int. J. Heat Mass Transfer, Vol. 43, pp. 1523-1535, 2000.

    19. Van Santen, H., Kleijn, C. R., and Van Den Akker, H. E. A., “Mixed convection in radial flow between horizontal plates-II. Experiments,” Int. J. Heat Mass Transfer, Vol. 43, pp. 1537-1546, 2000.

    20. Yu, C. H., Chang, M. Y., Huang, G. C. and Lin, T. F., “Unsteady vortex roll structures in a mixed convective air flow through a horizontal plane channel: a numerical study,” Int. J. Heat Mass Transfer, Vol. 40, No. 3, pp. 505-518, 1997.

    下載圖示 校內:立即公開
    校外:2003-08-26公開
    QR CODE