簡易檢索 / 詳目顯示

研究生: 朱書緯
CHU, Shu-wei
論文名稱: 不同熱退火溫度對五環素複晶薄膜之場效電晶體特性研究
Influence of Annealing on Polycrystalline Pentacene-based Field-effect Transistor
指導教授: 周維揚
Chou, Wei-yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 93
中文關鍵詞: 載子移動率有機場效電晶體五環素熱退火
外文關鍵詞: annealing, pentacene, OFETs, mobility
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們將具有不同膜厚的有機場效電晶體(Organic field-effect transistors, OFETs) 在真空裝置下進行不同溫度的熱退火(Annealing)來改善電性。並利用聚亞醯胺層(polyimide, PI)做為修飾層(modification layer)。OFETs熱退火的溫度分別為70和120度,OFETs中五環素(pentacene)有機半導體層(Organic semiconductor layer)的厚度分別為50、100、300、700和1000 Å。除了電性量測外,亦將樣品表面進行X-ray繞射,原子力顯微鏡(AFM)及拉曼散射光譜(Raman spectrum)分析。元件熱退火後除了載子移動率(mobility)有提高外,臨界電壓(threshold voltage, VT)亦向正向偏移。由X-ray繞射結果指出熱退火可以改善晶格的有序度(ordering),並可計算d-spacing,顯示在不經過熱退火下不同膜厚的五環素分子成膜初期幾乎與介電層表面垂直,在五環素膜厚超過300 Å之後則勢趨於穩定,與z軸的夾角大約在16° - 20°,經過熱退火後傾斜角則趨於穩定。最後在拉曼散射光譜觀察到1371 cm-1訊號的不對偁比(asymmetry ratio, ASR)降低,顯示熱退火後五環素分子的結晶環境有所改善。
    關鍵字:五環素、有機場效電晶體、載子移動率、熱退火

    In order to improvement electrical characteristics of pentacene-based field-effect transistors with different thickness pentacene films were annealed in a vacuum chamber. Organic field-effect transistors (OFETs) using polyimide (PI) as a modification layer were fabricated on a p-type silicon substrate. The annealing temperatures are 70 and 120 ℃. Pentacene films of 50, 100, 300, 700, and 1000 Å were deposited to investigate annealing effect on early stages of pentacene film growth. The surface morphology and structure of the films were examined by atomic force microscopy and X-ray diffraction spectroscopy. The threshold voltage (VT) of OFETs moves to positive and enhances carrier mobility after annealing the devices. The XRD data reveal that pentacene molecules of the first few layers are nearly perpendicular and molecules of the following layers are tilted-standing to the modification layer in the room temperature. The tilt angles of pentacene molecules are thickness independent and maintained approximately at 16°-20° after thermal annealing. Finally, we focus on analyzing the peak of 1371 cm-1 in the Raman spectrum. The reduction of asymmetry ratio (ASR) for the peak indicates an improved microstructure after thermal annealing.
    Keywords: pentacene, OFETs, mobility, annealing

    摘要 I ABSTRACT II 致謝 III 目次 IV 表目錄 VII 圖目錄 VIII 第1章 簡介 1 1.1 有機半導體(ORGANIC SEMICONDUCTOR) 1 1.1.1 有機半導體簡介 1 1.1.2 有機半導體的傳輸機制 2 1.1.3 五環素簡介 5 1.2 有機場效電晶體 6 1.2.1 有機場效電晶體簡介 6 1.2.2 有機場效電晶體元件結構 6 1.2.3 有機場效電晶體的元件特性 7 1.2.4 有機場效電晶體的參數及公式 8 第2章 實驗儀器及量測 26 2.1 物理氣相沉積蒸鍍系統 26 2.2 氧氣電漿(O2 PLASMA) 27 2.3 物性分析 28 2.3.1 拉曼散射量測系統 28 2.3.2 X-ray 繞射量測系統 32 2.3.3 原子力顯微鏡系統 32 2.4 電性分析 33 第3章 不同膜厚有機場效電晶體熱退火效應研究 43 3.1 前言 43 3.2 元件製作 43 3.3 電性分析 44 3.4 X-RAY繞射分析 48 3.5 AFM分析 50 3.6 RAMAN量測與分析 52 3.6.1 Coupling energy分析 52 3.6.2 ASR分析 54 第4章 結論與未來展望 88 參考文獻 90

    [1]. F. Ebisawa, T. Kurokawa, and S. Nara, “ Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys. 54, 3255 (1983).
    [2]. C. W. Tang and S. A. Van Slyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51, 913 (1987).
    [3]. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science, 265, 1684 (1994).
    [4]. S. P. Li, D. P. Chu, C. J. Newsome, D. M. Russell, T. Kugler, M. Ishida, and T. Shimoda, “Short-channel polymer field-effect-transistor fabrication using spin-coating-induced edge template and ink-jet priting”, Appl. Phys. Lett. 87, 232111 (2005).
    [5]. V. M. Silva, and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED”, Journal of Non-Crystalline Solids, 352, 5429 (2006).
    [6]. C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Adv. Mater. 14, 99 (2002).
    [7]. D. Gamota, J. Zhang, P.Braizs and K.Kalyanasundaram, “Printed organic and molecular electronics”, Kluwer Academic Publishers (2004).
    [8]. R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models”, J. Chem. Phys., 44, 3797 (1966).
    [9]. G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater. 10, 365 (1998).
    [10]. J. H. Schön, C. Kloc and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors”, Org. Electron. 1, 57 (2000).
    [11]. J. H. Schön, C. Kloc and B. Batlogg, “Fractional Quantum Hall Effect in Organic Molecular Semiconductors”, Science 288, 2338 (2000).
    [12]. S. F. Nelson, Y.-Y. Lin, D. J. Gundlach and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors”, Appl. Phys. Lett. 72, 1854 (1998).
    [13]. T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones, “High performance organic thin film transistors”, Mater. Res. Soc. Symp. Proc. 771, 169 (2003).
    [14]. R. Ruiz, B. Nickel, N. Koch, L. Feldman, R. Haglund, A. Kahn and G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces”, Phys. Rev. B 67, 125406 (2003).
    [15].買昱椉, “有機半導體分子排列的基礎研究與對有機薄膜電晶體的應用”, 國立成功大學碩士論文(2004).
    [16]. J. E. Lilienfeld, US Patent 1 745 175 (1930).
    [17]. D. Kahng, M. M. Atalla, “Silicon-Silicon Dioxide Field Induced Surface Devices”, IRE Solid-State Devices Research Conference, Carnegie Institute of Technology, Pittsburgh, PA (1960).
    [18]. H. Koezuka, A. Tsumura and T. Ando, “Field-effect transistor with polythiophene thin film”, Synth. Met. 18, 699 (1987).
    [19]. P. K.Weimer, “The TFT – A New Thin-Film Transistor”, Proc. IRE, 50, 1462 (1962).
    [20]. M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED panel driven by bottom-contact OTFTs”, IEEE Electron Device Lett. 27, 249 (2006).
    [21]. 羅吉宗, “薄膜科技與應用”, 全華科技圖書股份有限公司(2004)
    [22]. R. H. Hansen, J. V. Pascale, T. Debenedictis and P. M. Rentzepis, “Effect of Atomic Oxygen on Polymers”, J. Polymer Sci. A, 3 2205 (1965).
    [23].汪健民, “材料分析”, 中國材料科學學會(1998).
    [24]. J. R. Ferraro, “Introductory Raman Spectroscopy”, Academic Press, 2nd, p.15.
    [25]. A. S. Davydov, “Theory of Molecular Excitons”, McGraw-Hill, New York (1971).
    [26]. T. M. Nedungadi, “Conical refraction in naphthalene crystals”, Proc. Indian Acad. Sci., 15, 376 (1942).
    [27] L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti and G. Strazzulla, “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J, 396. 369 (1992).
    [28]. C. Kittel, “Introduction to Solid State Physics” 7th edition, Wiley, New York, p. 70 (1996).
    [29]. 陳儒賢, “不同介電材料之表面能對pentacene複晶薄膜所產生之應力的研究”, 成功大學碩士論文(2006).
    [30]. S. E. Fritz, T. W. Kelley, C. D. Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer”, J. Phys. Chem. B, 10574 (2005).
    [31]. R. Ye, M. Baba, K. Suzuki, Y. Ohishi and K. Mori, “Effect of Thermal Annealing on Morphology of Pentacene Thin Films”, Jpn. J. Appl. Phys. 42, 4473 (2002).
    [32]. R. Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors”, Adv. Mater. 17, 1795 (2005).
    [33]. I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, “Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates”, Synth. Met. 104, 175 (1999).
    [34]. C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. De Boer and T. T. M. Palstra, “Polymorphism in pentacene”, Acta Crystallogr. sec. C 57, 939 (2001).
    [35]. C. C. Mattheus, G. A. de Wijs, R. A. de Groot and T. T. M. Palstra, “Modeling the Polymorphism of Pentacene”, J. Am. Chem. Soc. 125, 6323 (2003).
    [36]. G. Dong, I. Susumu, S. Koichiro, M. Hitoyuki and T. Kazuo, ” Effect of annealing on the mobility and morphology of thermally activated pentacene thin film transistors”, J. Appl. Phys. 99 094052 (2006).
    [37]. B. A. Weinstein and R. Zallen, ” Light Scattering in Solids Ⅳ”, Springer, Berlin 1984, p. 500.
    [38]. B. R. Suffolk and R. K. Gilpin, “Infrared spectrometric studies of cyanoalkyl ligands immobilized on chromatographic surfaces”, Anal. Chem. 57, 596 (1985).

    下載圖示 校內:2008-07-30公開
    校外:2008-07-30公開
    QR CODE