簡易檢索 / 詳目顯示

研究生: 施之晴
Shih, Chih-Ching
論文名稱: Pichia屬與 Pediococcus屬在咖啡二次發酵中的作用與影響
The Roles and Effects of Pichia and Pediococcus during Secondary Fermentation of Coffee
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 60
中文關鍵詞: 二次發酵Pichia fermentansPediococcus acidilactici咖啡風味微生物群落
外文關鍵詞: Secondary fermentation, Pichia fermentans, Pediococcus acidilactici, Coffee flavor, Microbial community
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討發酵畢赤酵母 Pichia fermentans(Pf菌)與嗜酸球乳桿菌 Pediococcus acidilactici(Pa菌)應用於台灣東山地區阿拉比卡鐵皮卡品系咖啡生豆二次發酵中的潛力與實際影響,並針對發酵過程中微生物菌相動態、特定內含物變化,以及最終風味品質進行綜合性分析與評估。東山地區雖擁有良好氣候與栽培條件,但當地咖啡普遍缺乏風味辨識度與品牌價值,因此本研究以控制型二次發酵作為風味提升策略,藉由選用具發酵潛力之Pf與Pa菌株,進行生豆的發酵處理。實驗設計分為單菌組(僅Pf菌)與共發酵組(Pf+Pa菌共施用),透過次世代定序技術(NGS)分析菌相組成變化,並與未發酵組作為對照進行HPLC定量,分析咖啡因與綠原酸含量,同時搭配甜度與感官杯測進行風味表現評估。結果顯示,在特定處理組別中,微生物群落的穩定性與組成出現差異,Pf菌為真菌群中的絕對優勢菌種,而Pa雖佔比不高,仍能穩定定殖。部分菌株可能透過代謝作用參與綠原酸等酚類物質的轉化,進一步影響酸質表現。感官分析則顯示,發酵處理後於甜度與平衡度上表現相對穩定,風味表現趨於集中一致。整體而言,本研究證實Pf與Pa菌共發酵技術可穩定咖啡豆發酵過程中之菌相結構,提升甜感與酸質表現,改善整體感官品質,對於提升東山咖啡的市場辨識度與附加價值具有潛力,並為未來台灣特色咖啡之差異化開發與機能性加工提供具體應用依據。

    This study explores the application of Pichia fermentans (Pf) and Pediococcus acidilactici (Pa) in the secondary fermentation of Arabica Typica green coffee beans from Dongshan, Taiwan. Through next-generation sequencing (16S and ITS), HPLC, °Brix sweetness, and sensory evaluation, the effects on microbial dynamics, chemical composition, and flavor quality were assessed. Results showed that Pseudomonas antarctica dominated the bacterial community, while Pa remained stably present and potentially contributed to acidity and flavor modulation. In the fungal community, Pf showed over 99% relative abundance across treatments, indicating strong adaptability and dominance. Although overall microbial diversity was low, the Pf+Pa group exhibited more stable fungal diversity. HPLC results showed little change in caffeine levels, but chlorogenic acid slightly increased in the Pf group and significantly decreased in the Pf+Pa group, suggesting enzymatic degradation by Pa. Sensory analysis revealed that the Pf+Pa group achieved the highest scores in aroma, sweetness, flavor, aftertaste, balance, and overall impression, with the highest °Brix and lowest pH. These findings suggest that Pf and Pa co-fermentation can improve flavor complexity and offer a promising strategy for enhancing the quality and market identity of Taiwanese specialty coffee.

    壹、 前言1 一、咖啡的品種1 二、咖啡豆處理方式與二次發酵1 三、咖啡中的內含物2 四、發酵中常見之微生物3 1. 微生物的影響3 2. 總體基因體學(Metagenomics)3 五、研究動機4 六、研究目的5 七、研究架構5 貳、 材料跟方法6 一、實驗材料6 二、實驗製作過程及採樣6 1. 菌株活化及培菌6 2. 二次發酵6 三、微生物DNA萃取7 四、聚合酶連鎖反應(Polymerase chain reaction, PCR)8 五、DNA定序9 六、資料分析9 1. 讀序重組、合併與正規化9 2. 重取樣分析(rarefaction analysis)10 3. α多樣性 10 4. β多樣性 11 5. 文氏圖(Venn diagram)與核心微生物群(Core microbiome)11 七、咖啡豆成分分析11 1. 樣本萃取12 2. 分析條件12 八、風味雷達圖、甜度與pH值 13 1. 杯測表13 2. 甜度14 3. pH值14 九、統計分析15 參、 結果16 一、樣本讀序數資料16 1. 讀序數16 2. 重取樣分析(rarefaction analysis) 16 二、發酵液樣本菌相之組成分析與豐富度17 1. 物種多樣性分析(α多樣性)17 2. 階層分析法(HCA)18 3. 非度量多維尺度分析(Non-metric Multidimensional Scaling,NMDS)18 4. 咖啡發酵液微生物相之菌群分布19 5. 文氏圖(Venn diagram)和核心微生物群(Core microbiome)19 三、HPLC之內含物分析20 四、風味雷達圖、甜度與pH值22 肆、 討論23 一、酵母菌、乳酸菌對咖啡二次發酵的菌相影響23 二、發酵後咖啡因、綠原酸含量變化25 三、咖啡的二次發酵是否提升風味?26 伍、 結論28 陸、參考文獻29

    Ayseli, M. T., Kelebek, H., & Selli, S. (2021). Elucidation of aroma-active compounds and chlorogenic acids of Turkish coffee brewed from medium and dark roasted Coffea arabica beans. Food Chemistry, 338, 127821.
    da Silva Vale, A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Rodrigues, C., Pagnoncelli, M. G. B., & Soccol, C. R. (2019). Effect of co-inoculation with Pichia fermentans and Pediococcus acidilactici on metabolite produced during fermentation and volatile composition of coffee beans. Fermentation, 5(3), 67.
    De Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2017). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and environmental microbiology, 83(1), e02398-02316.
    Karakaplan, M., & Özcan, M. (2017). Determination of phenolic acids in pomegranate juices by HPLC-DAD. Avrupa Bilim ve Teknoloji Dergisi, 6(10), 32-37.
    Lai, K. K., Lorca, G. L., & Gonzalez, C. F. (2009). Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Applied and environmental microbiology, 75(15), 5018-5024.
    Lemos, M. F., de Andrade Salustriano, N., de Souza Costa, M. M., Lirio, K., da Fonseca, A. F. A., Pacheco, H. P., Endringer, D. C., Fronza, M., & Scherer, R. (2022). Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. Journal of Saudi Chemical Society, 26(3), 101467.
    Musialowski, M., Kowalewska, Ł., Stasiuk, R., Krucoń, T., & Debiec-Andrzejewska, K. (2023). Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes. Microbial Cell Factories, 22(1), 85.
    Papadimitriou, K., Alegría, Á., Bron, P. A., De Angelis, M., Gobbetti, M., Kleerebezem, M., Lemos, J. A., Linares, D. M., Ross, P., & Stanton, C. (2016). Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837-890.
    Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of applied microbiology, 100(6), 1171-1185.
    Pregolini, V. B., de Melo Pereira, G. V., da Silva Vale, A., de Carvalho Neto, D. P., & Soccol, C. R. (2021). Influence of environmental microbiota on the activity and metabolism of starter cultures used in coffee beans fermentation. Fermentation, 7(4), 278.
    Rappé, M. S., & Giovannoni, S. J. (2003). The uncultured microbial majority. Annual Reviews in Microbiology, 57(1), 369-394.
    Razafinarivo, N. J., Guyot, R., Davis, A. P., Couturon, E., Hamon, S., Crouzillat, D., Rigoreau, M., Dubreuil-Tranchant, C., Poncet, V., & De Kochko, A. (2013). Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites. Annals of botany, 111(2), 229-248.
    Rojas-González, A., Figueroa-Hernández, C. Y., González-Rios, O., Suárez-Quiroz, M. L., González-Amaro, R. M., Hernández-Estrada, Z. J., & Rayas-Duarte, P. (2022). Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: A review. Molecules, 27(11), 3400.
    Sagita, D., Rukmana, J., Utami, D., Andriansyah, R. C. E., Ekafitri, R., Kristanti, D., Kumalasari, R., Setiaboma, W., Yulianti, L. E., & Putri, D. P. (2025). Effect of green coffee beans fermentation with and without ohmic heating: Physicochemical and sensory properties. Journal of Future Foods.
    Santanatoglia, A., Angeloni, S., Caprioli, G., Fioretti, L., Ricciutelli, M., Vittori, S., & Alessandroni, L. (2024). Comprehensive investigation of coffee acidity on eight different brewing methods through chemical analyses, sensory evaluation and statistical elaboration. Food Chemistry, 454, 139717.
    Seninde, D. R., & Chambers, E. (2020). Coffee flavor: A review. Beverages, 6(3), 44.
    Sepúlveda, W. S., Chekmam, L., Maza, M. T., & Mancilla, N. O. (2016). Consumers' preference for the origin and quality attributes associated with production of specialty coffees: Results from a cross-cultural study. Food Research International, 89, 997-1003.
    Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B., & Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS microbiology reviews, 35(4), 652-680.
    Wang ChunXiao, W. C., Mas, A., & Esteve-Zarzoso, B. (2016). The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific.
    Zhang, S. J., De Bruyn, F., Pothakos, V., Contreras, G. F., Cai, Z., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing. Frontiers in Microbiology, 10, 2621.
    Zhao, N., Kokawa, M., Suzuki, T., Khan, A. R., Dong, W., Nguyen, M. Q., & Kitamura, Y. (2024). Refermentation with yeast and lactic acid bacteria isolates: a strategy to improve the flavor of green coffee beans. Journal of the Science of Food and Agriculture, 104(15), 9137-9150.
    Zhao, Y., Wang, J., Ballevre, O., Luo, H., & Zhang, W. (2012). Antihypertensive effects and mechanisms of chlorogenic acids. Hypertension Research, 35(4), 370-374.
    Zou, J., Shen, H., Li, A., Wang, X., Yang, H., Cheng, J., Liu, X., & Tang, D. (2025). The effect of lactic acid bacteria as a starter on the microbial community and flavors of the fermented beef-soybean paste. Food Chemistry, 484, 144328.

    無法下載圖示 校內:2028-08-18公開
    校外:2028-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE