| 研究生: |
蔡維志 Tsai, Wei-Chih |
|---|---|
| 論文名稱: |
氧化鎢、金屬鎳與氧化鋅奈米線之成長暨其元件應用研究 Characterization and Applications of Tungsten Oxide Nanowires, Nickel Nanowires, and Zinc Oxide Nanowires |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 太陽電池 、奈米線 、場發射 |
| 外文關鍵詞: | field emission, solar cell, nanowire |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究一維氧化鎢(WOx)、金屬鎳(Ni)、氧化鋅(ZnO)奈米線之成長製備暨其電子、光電元件之應用及相關特性之研究。在研究中,我們提出以簡易的爐管熱處理方式自組式成長WOx奈米線,這種方法只需經由沉積純鎢(W)薄膜於矽基板上,在適當的實驗條件下,即可以大面積製作高密度(約250 mm-2)、長度與直徑約0.2 贡m/20 nm 的WOx奈米線。然利用此種熱處理方式成長之WOx奈米線,常因在製程中(薄膜沉積或是熱退火),表面吸附大量氧氣,導致WOx奈米線之電子場發射特性未臻理想。為改善WOx奈米線之場發射特性,本研究乃提出利用氫電漿處理以改善WOx 奈米線電子場發射特性,藉由適當之氫電漿處理,降低WOx奈米線表面之氧含量,並同時修飾與純化奈米線表面結構。此外,透過SEM、TEM、SAED、及XPS等工具,對WOx奈米線進行分析,探討WOx奈米線中各項物性、化性等對場發射特性的影響,並於本研究中提出相關物理機制之說明。
為了改善奈米線之電子場發射特性,我們另採用一低功函數之金屬鎳(Ni)奈米線當作是電子場發射之陰極材料。本研究中,利用電鍍製程搭配陽極氧化鋁(AAOTs)模板所成長的Ni奈米線,所得之奈米線成長密度介於1.5-2.1 109 cm-2,其長度與管徑則分別介於2.7-22 贡m與100-200 nm之間。除了具有高筆直性外,於長寬比、均勻度甚或密度等方面均較容易獲得控制。由於AAOTs具有筆直的奈米孔洞,當Ni奈米線於孔洞內成長後,只要在AAOTs模板上蓋上電極金屬作為正極,即可以近似AAOTs孔洞的厚度(~60 贡m)作為此電子場發射之間距。量測結果顯示在AAOT基板上成長之Ni奈米線,除了具有絕佳的方向性外,且具備優異之二極場發射特性,此一特性足以媲美傳統奈米碳管之場發射特性,也將會是未來相關領域場發射元件的最佳方案。另外,於研究中也將AAOTs模板移除,進一步於實驗中討論AAOTs模板對於場發射特性之影響,經由場發射電壓電流特性之量測可得知,移除AAOTs模板後的Ni奈米線試將會大幅的改善Ni奈米線之場發射特性,其所測得場發射特性之enhancement factor (刍)將比未移除AAOTs模板試片大於57.6%,相關的機制說明將於本論文中做一詳細之討論。
本研究亦提出一種整合AAOTs製作與電鍍沉積及氧化技術之異質接面奈米線結構之製作方法,藉由一維結構之奈米線異質接面之量子效應,將可有效提升元件之光電響應能力。本研究主要是將金屬鎳(Ni)及金屬鋅(Zn)依序電鍍沉積於AAOTs之奈米孔洞內,形成長度可調之Ni/Zn異質接面結構奈米線(Ni/Zn-NWs);再經適當之氧化製程,將奈米線整體氧化成具有p-type形態之氧化鎳(NiO)半導體與具有n-type形態的氧化鋅(ZnO)半導體。本研究所提出p-NiO/n-ZnO異質接面奈米線結構之製備方式,不需傳統昂貴之磊晶或是長晶製程,及具有不需觸媒、製程簡易與長度可控之優點。於實驗中亦透過Ni/Zn異質金屬接面奈米線及NiO/ZnO異質接面奈米線結構之光電特性量測結果,利用照光(UV光((254nm, 366 nm)與不照光(dark)的量測轉變,可以很明顯的發現本實驗所製作的Ni/Zn異質金屬接面奈米線及NiO/ZnO異質接面奈米線結構,對於UV入射光線具有很明顯的光電流(阻)變化。
為持續提升奈米線之光電元件應用與降低製程之複雜度及成本,本研究亦提出一種整合水熱法成長ZnO奈米線與NiO金屬鍍著技術,以ZnO奈米線為基材之NiO/ZnO奈米線異質接面結構之製作方法。以水熱法成長之ZnO奈米線具有低製程溫度(<90oC),不致降損元件元件之光電性能;且成長方式無需觸媒,於大面積基板上具垂直自我成長之特性,於大面積光電元件製作上具有極大優勢。透過水熱法方式成長所得之ZnO奈米線除了可以獲得垂直排列之ZnO奈米線外,於ZnO奈米線之長寬比、均勻度甚或密度等方面均較容易獲得控制。本研究中也將研究ZnO奈米線之成長製備方式以及其相關物性及化性特性的瞭解。成長垂直基板之ZnO奈米線後,搭配NiO金屬鍍著技術,形成NiO/ZnO奈米線異質接面結構。本實驗中,藉由NiO/ZnO奈米線異質接面結構照UV光與模擬太陽光(AM1.5)及不照光(dark)的量測結果,可以明顯的發現本實驗所製作的NiO/ZnO奈米線異質接面結構,對於UV入射光線具有很明顯的光電流變化。同時,在模擬太陽光(AM1.5)的作用下,可以觀察到元件明顯的光電壓特性。而實驗中各項分析結果顯示,奈米異質接面結構中,適當的材料選擇及搭配為成長製備未來奈米光電元件之關鍵因素。
於光電元件的應用上,一般as-grown ZnO奈米材料為一直接能隙n-型半導體材料,其能隙為3.37 eV,激子結合能為60 meV,較其他半導體材料擁有較大之光電轉換效率;此外,一維結構的ZnO奈米線具有量子侷限效應與高表面積/體積比率,可進一步提高光電元件性能及光電轉換效率,為一極具潛力之光電元件材料。基此,應用ZnO奈米線於薄膜太陽電池之開發製作已快速激起原先以矽半導體為主流之太陽能應用領域之注意,而相關研究開發活動亦已如火如荼展開中。針對ZnO奈米線於太陽電池之應用,本研究提出一利用水熱法成長ZnO奈米線於GaN基板上,形成p-GaN/n-ZnO奈米線太陽能電池元件結構及此太陽能電池元件量測之光電特性及轉換效率研究。因為ZnO與GaN兩種材料具有相近的能隙寬度、晶格常數、及良好的晶格匹配等特性,p-GaN/n-ZnO奈米線太陽能電池元件所得之開路電壓、短路電流與效率皆已達到近期奈米線材料特性研究之水準,顯示此p-GaN/n-ZnO奈米線太陽能電池元件具有價值性與創新性,為薄膜太陽電池製作並提升其光電特性上提供另一新穎材料與技術之選擇。
In this thesis, the growth and physical/chemical properties of one-dimensional tungsten oxide nanowires (TONWs), nickel nanowires (NiNWs), zinc oxide nanowires (ZnO-NWs) were investigated. This study also proposes the use of a these NWs structures for potential in applications of nano electronic and optoelectronic devices. In the first study, for the growth of TONWs, pure tungsten films with a thickness of 60 nm on n-type Si wafers were subjected to thermal annealing in a quartz tube furnace at 700oC in nitrogen ambient for 30 min. After thermal annealing, straight TONWs with a density of around 250 贡m-2 and length/diameter of around 0.2 贡m/20 nm were obtained. However, oxygen adsorption might arise from the oxygen contamination of source material during wire growth, the residual oxygen in sputtered films or intentionally doped oxygen gas during sputtering deposition, and oxygen/humidity adsorption of the grown TONWs. In this study, H-plasma treatment is used to reduce the amount of oxygen adsorption and to tailor the density and morphologies of TONWs. Improved field emission (FE) characteristics are demonstrated and the related reduction in the effective emission barrier height is analyzed and discussed.
In general, FE current is a complex function of the work function, tip shape, diameter, length, and density of the emitter array. All of these factors affect the local field around the tip of nanowires and hence the FE current. In the previous study, the as-grown TONWs with a typical work function of 6.2 eV and their FE characteristics have been studied. Nanowires with a lower work function are expected to give better FE characteristics. So NiNWs with a lower work function of 5.15 eV are used as new electron field emitters. Well-ordered and vertically-aligned NiNWs with a controllable length in the range of 2.7~22 mm and high density of 1.5-2.1 109 cm-2 were grown inside the nanopores of anodic alumina oxide templates (AAOTs) using a simple electrochemical deposition (ECD) method. To measure electron FE characteristics of the prepared NiNWs, 60-mm-thick AAOTs were served as an insulating spacer. The relatively better FE characteristics with a turn-on field and the enhancement factor of 8.5-贡m-long NiNWs prepared within 100 pore diameter AAOTs were about 3.46 V/mm and 17621, respectively. It is expected that NiNWs prepared inside the nanopores of AAOTs with controllable diameters and lengths could offer an additional choice of material for electron field emitter applications. In addition, in order to obtain the pristine vertically-aligned NiNWs for FE characteristics measurements, the AAOTs were removed and the electron FE characteristics of the prepared NiNWs before and after removing the AAOTs were measured and discussed. After removing the AAOT, NiNWs showed better electron FE characteristics than the others within the AAOT. The effect of the aluminum oxide pillars on the FE characteristics of NiNWs has been examined, and their removal might make possible the immunity of FE electrons collision and accumulation on the vertical surface of the pillars, leading to a significant improvement in the FE performance.
Recently, nano heterostructured materials have attracted lots of attention because of the quantum confinement effects of nano heterojunctions (NHJs) and for their potential applications on quantum optoelectronic devices. In this study, well-ordered and vertically-aligned NiO/ZnO NHJs were grown inside the nanopores of AAOTs using ECD and thermal oxidization. This synthesis method presents a simple and novel method for the self-synthesis of NHJs NWs without using catalysts, easily growing and the length of NWs can be controlled accurately. The electrical characteristics of NiO/ZnO NHJs show a rectifying behavior of a p-n junction, while the Ni/Zn NHJs show an ohmic behavior. The optoelectronic characteristics of NiO/ZnO NHJs show a well rectifying behavior and strong photo response to the ultraviolet (UV) lights (254 and 366 nm). Possible carrier transport of the NiO/ZnO NHJs under UV light irradiation is analyzed and discussed. Because of less dimension of the NiO/ZnO NHJs show profound quantum confinement effect, these devices are expected to exhibit much better optoelectronic performance than conventional planar devices.
In order to improve the optoelectronic properties of the NHJs and to overcome the processing expensive and time consuming, a novel technology using hydrothermal growth (HTG) associated with deposition techniques for the fabrication of nano hetero structure based on ZnO nanowires (ZnO-NWs) is reported in this study. The HTG method is the most commonly used for commercial applications because of their low cost of equipment, large-area and uniform fabrication, and low processing temperature. NiO/ZnO-NWs NHJs were formed via e-beam deposition of p-type NiO onto the vertical-aligned ZnO-NWs grown by HTG method. Furthermore, the use of a ZnO-NW-based heterojunction structure for applications of nano optoelectronic sensors and photovoltaic devices was proposed. The optoelectronic properties of the NiO/ZnO-NWs NHJs with different NiO thicknesses under UV light (366 nm, 6 mW/cm2) illumination, with good UV sensitivity were analyzed and discussed. Under simulated AM 1.5G solar light illumination, the fabrication of NiO/Zn-NWs NHJs solar cell and its photovoltaic characteristics were also presented.
Finally, ZnO with a wide direct bandgap (3.37 eV) and a large excitation biding energy (60 meV) is a promising n-type semiconductor material for applications of light emitting diodes, sensors, and solar cells. In addition, ZnO-NWs are widely used to yield better efficiency for sensor and solar energy than thin films because of their nanosized structures, high integration, high surface active area, attractive optoelectronic properties, and the profound quantum confinement effect. For the application of photovoltaic and solar cell devices, the growth of ZnO-NWs with controllable diameter/length/density and fabrication of n-ZnO-NWs-based NHJs with p-type GaN are studied. A number of ZnO-NWs/p-GaN NHJs have been studied as a strong candidate for optoelectronic device applications, since these materials (ZnO and GaN) have similar fundamental bandgap energy, the relatively close physical properties, and a low lattice constant mismatch. Under AM 1.5G solar light illumination, the fabrication of n-ZnO-NW/p-GaN solar cells and their photovoltaic characteristics with different lengths of ZnO-NW were analyzed. Effects of the length of ZnO-NWs on the photovoltaic performance of the ZnO-NWs/p-GaN NHJs were also investigated and discussed.
[1-1] R. P. Feynman, Caltech's Engineering and Science, (1960).
[1-2] George Elling, Managing Director, Deutsche Bank Technology Group, “The nanotech report 2003”, Investment Overview and Market Research for Nanotechnology (Volume II).
[1-3] NRC Report: Small Wonders, Endless Frontiers: Review of the National Nanotechnology Initiative (National Research Council, July 2002).
[1-4] R. Waser, Nanoelectronics and Information Technology, Wiley, Germany, (2003).
[1-5] H. Weller, ”Quantized semiconductor particles: A novel state of matter for materials science”, Adv. Mater. 5, 88 (1993).
[1-6] Y. J. Xiong and Y. N. Xia, ”Shape-controlled synthesis of metal nanostructures: The case of palladium”, Adv. Mater. 19, 3385 (2007).
[1-7] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi, ”Optical gain and stimulated emission in nanocrystal quantum dots”, Science 290, 314 (2000).
[1-8] H. Pettersson, L. Baath, N. Carlsson, W. Seifert and L. Samuelson, ”Case study of an InAs quantum dot memory: Optical storing and deletion of charge”, Appl. Phys. Lett. 79, 78 (2001).
[1-9] A. N. Shipway, E. Katz and I. Willner, ”Nanoparticle arrays on surfaces for electronic, optical, and sensor applications”, Chem. Phys. Chem. 1, 18 (2000).
[1-10] A. J. Phillips, ”Evaluation of the fundamental properties of quantum dot infrared detectors”, J. Appl. Phys. 91, 4590 (2002).
[1-11] A. S. Coe, W. L. Woo, M. Bawendi and V. Bulovic, ”Electroluminescence from single monolayers of nanocrystals in molecular organic devices”, Nature 420, 800 (2002).
[1-12] J. L. Costa-Krämer, N. Garcia and H. Olin, ”Conductance quantization in bismuth nanowires at 4 K”, Phys. Rev. Lett. 78, 4990 (1997).
[1-13] J. Zhao, C. Buia, J. Han and J. P. Lu, ”Quantum transport properties of ultrathin silver nanowires”, Nanotechnology 14, 501 (2003).
[1-14] P. C. Chang, C. J. Chien, D. Sitchtenoth, C. Ronning and J. G. Lu, ”Finite size effect in ZnO nanowires”, Appl. Phys. Lett. 90, 113101 (2007).
[1-15] Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, ”High performance silicon nanowire field effect transistors”, Nano Lett. 3, 149 (2003).
[1-16] A. Motayed et al., ”Diameter dependent transport properties of gallium nitride nanowire field effect transistors”, Appl. Phys. Lett. 90, 043104 (2007).
[1-17] P. McCord, S. L. Yau and A. J. Bard, ”Chemiluminescence of anodized and etched silicon: Evidence for a luminescent siloxene-like layer on porous silicon”, Science 257, 68 (1992).
[1-18] L.T. Canham, ”Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett. 57, 1046 (1990).
[1-19] L. K. van Vugt, J. Sandra, S. J. Veen, E. P. A. M. Bakkers, A. L. Roest and D. Vanmaekelbergh, ”Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation”, J. Am. Chem. Soc. 127, 12357 (2005).
[1-20] J. C. Lin, and W. L. Chen, ”Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction”, Optics Express 14, 9764 (2006).
[1-21] J. Kido, M. Kimura, and K. Nagai, ”Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
[1-22] Y. Fukuda, T. Watanabe, T. Wakimoto, S. Miyaguchi and M. Tsuchida, ”An organic LED display exhibiting pure RGB colors”, Synthetic Metals 111, 1 (2000).
[1-23] J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, and R. G. Copeland, ”Luminescent properties of solution-grown ZnO nanorods”, Appl. Phys. Lett. 88, 252103 (2006).
[1-24] Y. Zhao, D. Yang, D. Li and M. Jiang, ”Annealing and amorphous silicon passivation of porous silicon with blue light emission”, Appl. Surf. Sci. 252, 1065 (2005).
[1-25] X. Zhao, O. Schoenfeld, S. Komuro, Y. Aoyagi, and T. Sugano, ”Quantum confinement in nanometer-sized silicon crystallites”, Phys. Rev. B 50, 18654 (1994).
[1-26] A. J. Kenyon, P. F. Trwoga, and C. W. Pitt, ”The origin of photoluminescence from thin films of silicon-rich silica”, J. Appl. Phys. 79, 9291 (1996).
[1-27] E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, ”Luminescence from plasma deposited silicon films”, J. Appl. Phys. 81, 2410 (1997).
[1-28] Wei-Chih Tsai, Jia-Chuan Lin, Kuo-Ming Huang, Po-Yu Yang, and Shui-Jinn Wang, ”White light emissions from p-type porous silicon layers by high-temperature thermal annealing”, Europhysics Letters, 85, 27002 (2009).
[1-29] H. Grabert, and M. Devoret, Single electron tunneling, Plenum Press, New York, (1992).
[1-30] S. H. Wang, T. C. Chou, and C. C. Liu, ”Nano-crystalline tungsten oxide NO2 sensor”, Sens. and Actuators B 94, 343 (2003).
[1-31] C. Bock, C. Paquet, M. Couillard, G. A. Botton, and B. R. MacDougall, ”Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism”, J. Am. Chem. Soc. 126, 8028 (2004).
[1-32] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, ”One-dimensional nanostructures: Synthesis, characterization, and applications”, Adv. Mat. 15, 353 (2003).
[1-33] Z. L. Wang, Nanowires and Nanobelts Vol. I, Kluwer Academic Publishers, Boston, MA (2003).
[1-34] S. Iijima, ”Helical microtubules of graphitic carbon”, Nature 354, 56 (1991).
[1-35] http://www.tipmagazine.com/tip/INPHFA/vol-10/iss-1/p24.html
[1-36] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, ”Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition”, Chem. Phys. Lett. 381, 422 (2003).; S. Y. Chen, H. Y. Miao, J. T. Lue, and M. S. Ouyang, ”Fabrication and field emission property studies of multiwall carbon nanotubes”, J. Phys. D: Appl. Phys. 37, 273 (2004).
[1-37] http://www.pharmacy.uwaterloo.ca/research/foldvari/about/index.html
[1-38] Y. Huang. X. Duan, Y. Cui, L. J. Lauhon, K. H. KKim and C. Lieber, ”Phylogenetic perspectives in innate immunity”, Science 294, 1313 (2001).
[1-39] http://www.nanonet.go.jp/english/mailmag/2006/070a.html
[1-40] D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. E. Smalley, ”Growth and sintering of fullerene nanotubes”, Science 266, 1218 (1994).
[1-41] Z. W. Pan, Z. R. Dai and Z. L. Wang, ” Nanobelts of semiconducting oxides”, Science 291, 1947 (2001).
[1-42] A. M. Morales and C. M. Lieber, ”A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, 279, 208 (1998).
[1-43] Y. Peng, H. L. Zhang, S. L. Pan and H. L. Li, ”Magnetic properties and magnetization reversal of 脉-Fe nanowires deposited in alumina film”, J. Appl. Phys 87, 7405 (2000).
[1-44] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen and S. X. Wang, ” Preparation and photoluminescence of highly ordered TiO2 nanowire arrays”, Appl. Phys. Lett. 78, 1125 (2001).
[1-45] D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett and M. Moskovits, ” Field emitters based on porous aluminum oxide templates”, J. Appl. Phys. 86, 3983 (1999).
[1-46] H. Wu, D. Lin, R. Zhang and W. Pan, ”ZnO nanofiber field-effect transistor assembled by electrospinning”, J. Am. Ceram. Soc., 91, 656 (2008).
[1-47] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wong, Y. H. Zou, W. Qian, Q. C. Xiong, H. T. Zhou and S. Q. Feng, ”Nanoscale silicon wires synthesized using simple physical evaporation”, Appl. Phys. Lett. 72, 3458 (1998).
[1-48] G. Audoit, J. S. Kulkarni, M. A. Morris and J. D. Holmes, ”Size dependent thermal properties of embedded crystalline germanium nanowires”, J. Mater. Chem., 17, 1608 (2007).
[1-49] C. J. Otten, O. R. Louire, M. F. Yu, J. M. Couley, M. J. Dyer, R. S. Ruoff and W. E. Buhro, ”Crystalline boron nanowires”, J. Am. Chem. Soc. 124, 4564 (2002).
[1-50] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, ”Amorphous silica nanowires: Intensive blue light emitters”, Appl. Phys. Lett. 73, 3076 (1998).
[1-51] G. Gundiah, A. Govindaraj and C. N. R. Rao, ”Nanowires, nanobelts and related nanostructures of Ga2O3”, Chem. Phys. Lett. 351, 189 (2002).
[1-52] Y. D. Yin, G. T. Zhang and Y. N. Xia, ”Synthesis and characterization of MgO nanowires through a vapor-phase precursor method”, Adv. Funct. Mater. 12, 293 (2002).
[1-53] C. A. Grimes, ”Synthesis and application of highly ordered arrays of TiO2 nanotubes”, J. Mater. Chem. 15, 1451 (2007).
[1-54] S. J. Wang, C. H. Chen, S. C. Chang, K. M. Uang, C. P. Juan and H. C. Cheng, ”Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films”, Appl. Phys. Lett. 85, 2358 (2004).
[1-55] A. I. Bhatt, A. M. Mechler, L. L. Martin and A. M. Bond, ”Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation”, J. Mater. Chem. 17, 2241 (2007).
[1-56] S. H. Liu, J. B. H. Tok and Z. N. Bao, ”Nanowire lithography: Fabricating controllable electrode gaps using Au−Ag−Au nanowires”, Nano Lett. 5, 1071 (2005).
[1-57] C. Y. Wang, M. Chen, G. M. Zhu and Z. G. Lin, ”A novel soft-template technique to synthesize metal Ag nanowire”, J. Colloid Interface Sci. 243, 362 (2001).
[1-58] M. H. Huang, A. Choudrey and P. D. Yang, ”Ag nanowire formation within mesoporous silica”, Chem. Commun. 12, 1063 (2000).
[1-59] Y. Song, R. M. Garcia, R. M. Dorin, H. R. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller and J. A. Shelnutt, ”Synthesis of platinum nanowire networks using a soft template”, Nano. Lett. 7, 3650 (2007).
[1-60] X. M. Yan, S. Kwon, A. M. Contreras, J. Bokor and G. A. Somorjai, ”Fabrication of large number density platinum nanowire arrays by size reduction lithography and nanoimprint lithography”, Nano Lett. 5, 745 (2005).
[1-61] Y. Y. Wu, R. Fan and P. D. Yang, ”Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires”, Nano. Lett. 2, 83 (2002).
[1-62] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, ”One-dimensional steeplechase for electrons realized”, Nano. Lett. 2, 87 (2002).
[1-63] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, ”Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature 415, 617 (2002).
[1-64] N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, P. A. Smith, B. Razavi, T. S. Mayer and T. E. Mallouk, ”Layer-by-layer assembly of rectifying junctions in and on metal nanowires”, J. Phys. Chem. B 105, 8762 (2001).
[1-65] N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, T. E. Mallouk, M. Cabassi and T. S. Mayer, ”Investigation on preparation and physical properties of LPCVD SixOyNz thin films and nanocrystalline Si/SixOyNz superlattices for Si-based light emitting devices”, Mat. Sci. Eng. C 19, 255 (2002).
[1-66] W. I. Park, G. C. Yi, J. W. Kim and S. M. Park, ”Schottky nanocontacts on ZnO nanorod arrays”, Appl. Phys. Lett. 82, 4358 (2003).
[1-67] D. J. Pena, J. K. N. Mbindyo, A. J. Carado, T. E. Mallouk, C. D. Keating, B. Razavi and T. S. Mayer, ”Template growth of photoconductive metal−CdSe−metal nanowires”, J. Phys. Chem. B 106, 7458 (2002).
[1-68] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Liber, ”Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004).
[1-69] J. H. Zhan, Y. Bando, J. Q. Hu, Z. W. Liu, L. W. Yin and D. Golberg, ”Fabrication of metal-semiconductor junctions”, Angew. Chem. Int. Ed., 44, 2140 (2005).
[1-70] J. Luo and J. Zhu, ”Arrays of one-dimensional metal/silicon and metal/carbon nanotube heterojunctions”, Nanotechnology 17, S262 (2006).
[1-71] C. F. Pan, L. Zhang, J. Zhu, J. Luo, Z. D. Cheng and C. Wang, ”Surface decoration of anodic aluminium oxide in synthesis of Nafion-115 nanowire arrays” Nanotechnology 18 (2007) 015302.
[1-72] W. Shi, Y. Zheng, N. Wang, C. S. Lee and S. T. Lee, ”A general synthetic route to III-V compound semiconductor nanowires”, Adv. Mater. 13, 591 (2001).
[1-73] H. Yu and W. E. Buhro, ”Solution-liquid-solid growth of soluble GaAs nanowires”, Adv. Mater. 15, 416 (2003).
[1-74] D. Almawlawi, C. Z. Liu and M. Moskovits, ”Nanowires formed in anodic oxide templates”, J. Mater. Res. 9, 1014 (1994).
[1-75] M. Zheng, L. Zhang, X. Zhang, J. Zhang and G. Li, ” Proton NMR studies of superconducting intercalation complexes: Orientation, arrangement and molecular dynamics in TaS2 (cobaltocene)”, Chem. Phys. Lett. 34, 298 (2001).
[1-76] F. Zhang, X. H. Liu, C. F. Pan and J. Zhu, ”Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process”, Nanotechnology 18, 345302 (2007).
[1-77] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, ”Gallium nitride nanowire nanodevices”, Nano Lett. 2, 101 (2002).
[1-78] C. J. Murphy, N. R. Jana, ”Controlling the aspect ratio of inorganic nanorods and nanowires”, Adv. Mater. 14, 80 (2002).
[1-79] C. R. Martin, ”Nanomaterials: A membrane-based synthetic approach”, Science 266, 1961 (1994).
[1-80] M.Nishizawa, V. P. Menon, and C. R. Martin, ”Metal nanotubule membranes with electrochemically switchable ion-transport selectivity”, Science 268, 700 (1995).
[1-81] R. V. Parthasarathy and C. R. Martin, ”Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization”, Nature 369, 298 (1994).
[1-82] K. B. Jirage, J. C. Hulteen, and C. R. Martin, ”Nanotubule-based molecular-filtration membranes”, Science 278, 655 (1997).
[1-83] G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff, ”Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method”, Chem. Mater. 10, 260 (1998).
[1-84] T. Kyotani, L.-F. Tsai, and A. Tomita, ”Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template”, Chem. Mater. 7, 1427 (1995).
[1-85] T. Kyotani, L. F. Tsai, and A. Tomita, ”Formation of platinum nanorods and nanoparticles in uniform carbon nanotubes prepared by a template carbonization method”, Chem. Commun. 7, 701 (1997).
[1-86] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, S. F. Fischer, H. Kronmüller, T. Schweinböck, D. Weiss and U. Gösele, ”High density hexagonal nickel nanowire array”, J. Magnetism and Magnetic Mater. 249, 234 (2002).
[1-87] R. A. Laudise, ”Hydrothermal synthesis of crystals”, C&EN September 28, 30 (1986).
[1-88] http://www.roditi.com/SingleCrystal/Quartz/Hydrothermal_Growth.html
[1-89] G.. Spezia, ”La pressione e chimicamente inattive nella solubilite e riecostituzione del quarzo”, Accad. Sci. Torino Atti 40, 254 (1905).
[1-90] R.A. Laudise, “Growth and perfection of crystals”, 458 (1959).
[1-91] L. Vayssieres, N. Beermann, S.E. Lindquist, ”Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides”, Chem. Mater. 13, 233 (2001).
[1-92] L. Vayssieres, K. Keis, S.E. Lindquist, ”Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater. 13, 4395 (2001).
[1-93] L. Vayssieres, J.H. Guo, ”Time-varied magnetic-field induced monolayer formation and Re-aggregation of Au nanoparticles”, J. Nanosci., Nanotechnol. 1, 385 (2001).
[1-94] L. Vayssieres, L. Rabenberg, A. Manthiram, ”Aqueous chemical route to ferromagnetic 3-D arrays of iron nanorods”, Nano Lett. 2, 1393 (2002).
[1-95] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen., ”Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Appl. Phys. Lett. 88, 23111 (2006).
[1-96] S. Y. Bae, C. W. Na, J. H. Kang, J. Park, ”Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation”, J. Phys. Chem. B 109, 2526 (2005).
[1-97] J. B. Cui, U. J.Gibson, ” Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-陕 method”, Appl. Phys. Lett. 87, 133108 (2005).
[1-98] J. M. Baik, J. L. Lee, ”Ferromagnetic properties of (Ga,Mn)N nanowires grown by a chemical vapor deposition method”, J. Vac. Sci. Technol. B 23, 530 (2005).
[1-99] J. T. Hu, M. Ouyang, P. D. Yang and C. M. Lieber, ”Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires”, Nature 399, 48 (1999).
[1-100] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima, ”Heterostructures of single-walled carbon nanotubes and carbide nanorods”, Science 285, 1719 (1999).
[1-101] J. R. Kim, H. Oh, H. M. So, J. J. Kim, J. Kim, C. J. Lee and S. C. Lyu, ”Schottky diodes based on a single GaN nanowire”, Nanotechnology 13, 701 (2002).
[1-102] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, ”Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature 409, 66 (2001).
[1-103] X. Duan, Y. Huang, and C. Lieber, ”Nonvolatile memory and programmable logic from molecule-gated nanowires”, Nano Lett. 2, 487 (2002).
[1-104] J. L. Lincoln, S. G. Mark, D. Wang and M. L. Charles, ”Epitaxial core–shell and core–multishell nanowire heterostructures”, Nature 420, 57 (2002).
[1-105] V. Derycke, R. Martel, J. Appenzeller and P. Avouris, ”Carbon nanotube inter- and intramolecular logic gates”, Nano Lett. 1, 453 (2001).
[1-106] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, ”Hybrid nanorod-polymer solar cells”, Science 295, 2425 (2002).
[2-1] Y. Li, Y. Bando and D. Golberg, ”Quasi-aligned single-crystalline W18O49 nanotubes and nanowires”, Adv. Mater. 15, 1294 (2003).
[2-2] G. Gu, B. Zheng, W. Q. Han, S. Roth and J. Liu, ”Tungsten oxide nanowires on tungsten substrates”, Nano Lett. 2, 849 (2002).
[2-3] Z. Jun, G. Li, Z. D. Shao, C. Jun, C. S. Jun, S. X. Ning, Y. Rusen and L. W. Zhong, ”Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett. 87, 223108 (2005).
[2-4] A. Kloss, T. Motzke, R. Grossjohann and H. Hess, ”Collective-excitation gap in the fractional quantum hall effect”, Phys. Rev. E 54, 5851 (1996).
[2-5] L. K. Elbaum, K. Ahn, J. H. Souk, C. Y. Ting and L. A. Nesbit, ”Effects of deposition methods on the temperature-dependent resistivity of tungsten films”, J. Vac. Sci. Technol. A 4, 3106 (1986).
[2-6] P. A. Cox, “Transition metal oxides”, Clarendon Press, Oxford (1995).
[2-7] P. Woodward, and A. Sleight, ”Ferroelectric tungsten trioxide”, J. Sol. State Chem., 131, 9 (1997).
[2-8] A. Souza-Filho, V. Freire, J. Sasaki, J. Mendes-Filho, J. Juliao, and U. Gomes, ”Coexistence of triclinic and monoclinic phases in WO3 ceramics”, J. Raman Spect., 31, 451 (2000).
[2-9] Z. Xu, J. F. Vetelino, R. Lec, D. C. Parker, ”Electrical properties of tungsten trioxide films”, J. Vac. Sci. Technol. A 8, 3634 (1990).
[2-10] T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, ”Fabrication and magnetic properties of arrays of metallic nanowires”, Science 261, 1316 (1993).
[2-11] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer, and H. Kronmuller, ”Hexagonally ordered 100 nm period nickel nanowire arrays”, Appl. Phys. Lett. 79, 1360 (2001).
[2-12] X. Zhao, J. L. Sun, and J. L. Zhu, ”Field-induced semiconductor-metal transition in individual NiO–Ni Schottky nanojunction”, Appl. Phys. Lett. 93, 152107 (2008).
[2-13] D. Adler and J. Feinleib, ”Band structure of magnetic semiconductors”, Phys. Rev. B 2, 3112 (1970).; A. B. Kunz, ”Three new superconducting members of the family of tetramethyltetraselenafulvalene (TMTSF) salts: TMTSF2CIO4, TMTSF2SbF6, TMTSF2TaF6”, J. Phys. C, 14, L445 (1981).
[2-14] S. A. Makhlouf, F. T. Parker, F. E. Spada, and A. E. Berkowitz, ”Magnetic anomalies in NiO nanoparticles”, J. Appl. Phys. 81, 5561 (1997).
[2-15] K. C. Liu and M. A. Anderson, ”Porous nickel oxide/nickel Films for electrochemical capacitors”, J. Electrochem. Soc. 143, 124 (1996).
[2-16] J. He, H. Lindström, A. Hagfeldt, and S.-E. Lindquist, ”Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell”, J. Phys. Chem. B 103, 8940 (1999).
[2-17] H. Yun, K. Miyazawa, H. Zhou, I. Honma, and M. Kuwabara, ”Synthesis of mesoporous thin TiO2 films with hexagonal pore structures using triblock copolymer templates”, Adv. Mater., 13, 1377 (2001).
[2-18] S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, ”Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: Bulk and crack-free thin film morphologies”, Adv. Funct. Mater. 14, 335 (2004).
[2-19] L. Vayssieres, ”On the design of advanced metal oxide nanomaterials”, Int. J. Nanotechnol. 1, 1 (2004).
[2-20] Z. L. Wang, ”Nanostructures of zinc oxide”, Mater. Today 7, 26 (2004).
[2-21] W. I. Park, D. H. Kim, S. W. Jung, and G.. C. Yi, ”Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. 80, 4232 (2002).
[2-22] R. S. Wagner and W. C. Ellis, ”Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett. 4, 89 (1964).
[2-23] Z. W. Pan, Z. R. Dai and Z. L. Wang, ”Nanobelts of semiconducting Oxides”, Science 291, 1947 (2001).
[2-24] W. Pan, ”Splendid One-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology”, ACS NANO 2, 1987 (2008).
[2-25] X. D. Wang, J. H. Song and Z. L. Wang, ”Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices”, J. Mater. Chem. 17, 711 (2007).
[2-26] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, ”Controlled growth of ZnO nanowires and their optical properties”, Adv. Funct. Mater. 12, 323 (2002).
[2-27] L. W. Yin, M. S. Li, Y. Bando, D. Golberg, X. L. Yuan and T. Sekiguchi, ”Tailoring the optical properties of epitaxially grown biaxial ZnO/Ge, and coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge heterostructures”, Adv. Funct. Mater. 17, 270 (2007).
[2-28] Q. X. Zhao, P. Klason and M. Willander, ”Growth of ZnO nanostructures by vapor–liquid–solid method”, Appl. Phys. A: Mater. Sci. Process. 88, 27 (2007).
[2-29] B. C. Cheng, Y. H. Xiao, G. S. Wu and L. D. Zhang, ”Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant”, Adv. Funct. Mater. 14, 913 (2004).
[2-30] J. W. Zhao, C. H. Ye, X. S. Fang, L. R. Qin and L. D. Zhang, ”Phase-selective electroprecipitation of calcium phosphate thin films at physiological temperatures”, Cryst. Growth Des. 6, 2643 (2006).
[2-31] K. Zou, S. M. Zhou, X. H. Zhang, X. Y. Qi and X. F. Duan, ” A promising nano-modification technique of titanium implants for orthopedic applications”, J. Nanosci. Nanotechnol. 6, 2200 (2006).
[2-32] J. H. Song, X. D. Wang, J. Liu, H. B. Liu, Y. L. Li and Z. L. Wang, ”Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer”, Nano Lett. 8, 203 (2008).
[2-33] X. D. Wang, J. Liu, J. H. Song and Z. L. Wang, ”Integrated nanogenerators in biofluid”, Nano Lett. 7, 2475 (2007).
[2-34] Y. Gao and Z. L. Wang, ”Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics”, Nano Lett. 7, 2499 (2007).
[2-35] Z. L. Wang and J. H. Song, ”Piezoelectric nanogenerators based on zinc oxide nanowire arrays”, Science 312, 242 (2006).
[2-36] Z.L. Wang, ”Nanostructures of zinc oxide”, Mater today 7, 26 (2004).
[2-37] R. W. Wood, ”On the maintenance of combinational vibrations by two simple harmonic forces”, Phys. Rev. 5, 1 (1897).
[2-38] R. H. Fowler, L. W. Nordheim, ”Electron emission in intense electric fields”, Proc. R. Soc. London Ser. A 119, 173 (1928).
[2-39] W. A. de Heer, A. Chatelain, and D. Ugarte, ”A carbon nanotube field-emission electron source”, Science 270, 1179 (1995).
[2-40] B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, ”Field emission from tetrahedral amorphous carbon”, Appl. Phys. Lett. 71, 1430 (1997).
[2-41] C. Lea, ”Field emission from carbon fibres”, J. Phys. D 6, 1105 (1973).
[2-42] S. Jeon and K. Yong, ” Direct synthesis of W18O49 nanorods from W2N film by thermal annealing”, Nanotechnology 18, 245602 (2007).
[2-43] L. Vila et al, ”Growth and field-emission properties of vertically aligned cobalt nanowire arrays”, Nano Lett. 4, 521 (2004).
[2-44] J. M. Bonard, K. A. Dean, B. F. Coll and C. Klinke, ”Field emission of individual carbon nanotubes in the scanning electron microscope”, Phys. Rev. Lett. 89, 197602 (2002).; S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa and Z. F. Ren, ”Field emission of carbon nanotubes grown on carbon cloth”, Appl. Phys. Lett. 85, 810 (2004).
[2-45] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, ”Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett. 81, 3648 (2002).
[2-46] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, ”Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, 1700 (1999).
[2-47] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong and C. H. Sow, ”Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films”, Nanotechnology 16, 88 (2005).
[2-48] J. Zhou, N. Xu, S. Deng, J. Chen, J. She and Z. Wang, ”Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties”, Adv. Mater. 15, 1835 (2003).
[2-49] A. G. Umnov, Y. Sharatori and H. Hiraoka, ”Giant field amplification in tungsten nanowires”, Appl. Phys. A 77, 159 (2003).
[2-50] Y. W. Ok, T. Y. Seong, C. J. Choi and K. N. Tu, ”Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing”, Appl. Phys. Lett. 88, 43106 (2006).
[2-51] Z.J. Zhang, Y. Zhao and M. Zhu, ”NiO films consisting of vertically aligned cone-shaped NiO rods”, Appl. Phys. Lett. 88, 033101 (2006).
[2-52] J. Joo, S. J. Lee, D. H. Park, Y. S. Kim, Y. Lee, C. J. Lee and S. R. Lee, ”Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatmen”, Nanotechnology 17, 3506 (2006).
[2-53] D. A. Neamen, Semiconductor physics and devices (2003).
[2-54] M. A. Green. Prospects for photovoltaic effciency enhancement using low dimensional structures. In 8th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, (2000).
[2-55] B. O’Regan, M. Gratzel, ”A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737 (1991).
[2-56] J. Lagemaat, A. J. Frank, ”Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cells: Nonlinear Electron-Transport Kinetics”, J. Phys. Chem. B 104 (2000) 4292.
[2-57] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gratzel, ”Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107, 8981 (2003).
[2-58] P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, M. Gratzel, ”Molecular-scale interface engineering of TiO2 nanocrystals: Improve the efficiency and stability of dye-sensitized solar cells”, Adv. Mater. 15, 2101 (2003).
[2-59] C. F. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. D. Cheng, P. Hu, W. Pan, Z. Y. Zhou, X. Yang and J. Zhu, ”Nanowire-based high-performance micro fuel cell: One nanowire, one fuel cell”, Adv. Mater. 20, 1644 (2008).
[2-60] Muskens et al. 10.1021/nl0808076.
[2-61] A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, ”Collective-excitation gap in the fractional quantum hall effect”, Phys. Rev. E 54, 5851 (1996).
[3-1] Y. Li, Y. Bando and D. Golberg, ”Quasi-aligned single-crystalline W18O49 nanotubes and nanowires”, Adv. Mater. 15, 1294 (2003).
[3-2] G. Gu, B. Zheng, W. Q. Han, S. Roth and J. Liu, ”Tungsten oxide nanowires on tungsten substrates”, Nano Lett. 2, 849 (2002).
[3-3] Z. Jun, G. Li, Z. D. Shao, C. Jun, C. S. Jun, S. X. Ning, Y. Rusen and L. W. Zhong, ”Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett. 87, 223108 (2005).
[3-4] A. Kloss, T. Motzke, R. Grossjohann and H. Hess, ”Collective-excitation gap in the fractional quantum hall effect”, Phys. Rev. E 54, 5851 (1996).
[3-5] L. K. Elbaum, K. Ahn, J. H. Souk, C. Y. Ting and L. A. Nesbit, ”Effects of deposition methods on the temperature-dependent resistivity of tungsten films”, J. Vac. Sci. Technol. A 4, 3106 (1986).
[3-6] C. H. Chen, S. J. Wang, R. M. Ko, Y. C. Kuo, K. M. Uang, T. M. Chen, B. W. Liou and H. Y. Tsai, ”The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films”, Nanotechnology 17, 217 (2006).
[3-7] S. J. Wang, C. H. Chen, R. M. Ko, Y. C. Kuo, C. H. Wong, C. H. Wu, K. M. Uang, T. M. Chen and B. W. Liou, ”Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process”, Appl. Phys. Lett. 86, 263103 (2005).
[3-8] J. H. Choi, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. Yu, I. T. Han and J. M. Kim, ”Enhanced electron emission from carbon nanotubes through density control using in situ plasma treatment of catalyst metal”, J. Appl. Phys. 94, 487 (2003).
[3-9] K. S. Ahn, J. S. Kim, C. O. Kim and J. P. Hong, ”N on-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission”, Carbon 41, 2481 (2003).
[3-10] K. Ryu, M. Kang, Y. Kim and H. Jeon, ”Low-temperature growth of carbon nanotube by plasma enhanced chemical vapor deposition using nickel catalyst”, Jpn. J. Appl. Phys. 42, 3578 (2003).
[3-11] X. L. Li, J. F. Liu and Y. D. Li, ”Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem. 42, 921 (2003).
[3-12] Z. Chen, D. den Engelsen, P. K. Bachmann, V. van Elsbergen, I. Koehler, J. Merikhi and D. U. Wiechert, ”High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radio-frequency oxygen plasma treatment”, Appl. Phys. Lett. 87, 243104 (2005).
[3-13] I. Kojima and M. Kurahashi, ”Application of asymmetrical Gaussian/Lorentzian mixed function for X-ray photoelectron curve synthesis”, J. Electron Spectrosc. Relat. Phenom. 42, 177 (1987).
[3-14] B. S. Satyanarayana, A. Hart, W. I. Milne and J. Robertson, ”Field emission from tetrahedral amorphous carbon”, Appl. Phys. Lett. 71, 1430 (1997).
[3-15] D. Hong, M. Asiam, M. Feldmann and M. Olinger, ”Simulations of fabricated field emitter structures”, J. Vac. Sci. Technol. B 12, 764 (1994).
[3-16] S. Jeon and K. Yong, ”Direct synthesis of W18O49 nanorods from W2N film by thermal annealing”, Nanotechnology 18, 245602 (2007).
[3-17] Y. B. Li, Y. Bando and D. Golberg, ”ZnO nanoneedles with tip surface perturbations: Excellent field emitters”, Appl. Phys. Lett. 84, 3603 (2004).
[3-18] L. Vila, P. Vincent, L. D. D. Pra, G. Pirio, E. Minoux, L. Gangloff, S. D. Champagne, N. Sarazin, E. Ferain, R. Leger, L. Piraux, P. Legagneux, ”Growth and field-emission properties of vertically aligned cobalt nanowire arrays”, Nano Lett. 4, 521 (2004).
[3-19] J. P. Bonnet, ”Surface electrical properties of tungsten oxides in equilibrium with the gas phase”, J. Nowotny, M. Onillon and I. Sikora, Oxidation of Metals 13, 273 (1979).
[3-20] J. Liu, J. Wu and S. Zhu, Bulletin of Tongji University, Shanghai, (2001), http://chemweb.tongji.edu.cn.
[3-21] M. J. Fransen, M. H. F. Overwijk, and P. Kruit, ”Brightness measurements of a ZrO/W Schottky electron emitter in a transmission electron microscope”, Appl. Surf. Sci. 146, 357 (1999).
[3-22] V. V. Zhimov, W. B. Choi, J. J. Cuomo and J. J. Hren, ”Diamond coated Si and Mo field emitters: diamond thickness effect”, Appl. Surf. Sci. 94/95, 123 (1996).
[3-23] C. Tang and Y. Bando, ”Effect of BN coatings on oxidation resistance and field emission of SiC nanowires”, Appl. Phys. Lett. 83, 659 (2003).
[3-24] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, ”Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76, 2071 (2000).
[3-25] K. Teo, M. Chhowalla, G. Amaratunga, and W. Milne, ”Field emission from dense, sparse, and patterned arrays of carbon nanofibers”, Appl. Phys. Lett. 80, 2011 (2002).
[3-26] J-M Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Châtelain, ”Tuning the field emission properties of patterned carbon nanotube films”, Adv. Mater. 13, 184 (2001).
[3-27] A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, ”Collective-excitation gap in the fractional quantum hall effect”, Phys. Rev. E 54, 5851 (1996).
[4-1] S. J. Wang, C. H. Chen, S. C. Chang, K. M. Uang, C. P. Juan and H. C. Cheng, ”Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films”, Appl. Phys. Lett. 85, 2358 (2004).
[4-2] S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee and K. H. Lee, ”Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization”, Nanotech. 16, 850 (2005).
[4-3] C. Y. Kuan, J. M. Chou, I. C. Leu and M. H. Hon, ”Formation and field emission property of single-crystalline Zn microtip arrays by anodization”, Electrochem. Commun. 9, 2093 (2007).
[4-4] L. Vila, P. Vincent, L. Dauginet-De Pra, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, and P. Legagneux, ”Growth and field-emission properties of vertically aligned cobalt nanowire arrays”, Nano Lett. 4, 521 (2004).
[4-5] J. Joo, S. J. Lee, D. H. Park, Y. S. Kim, Y. Lee, C. J. Lee, and S. R. Lee, ”Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment”, Nanotech. 17, 3506 (2006).
[4-6] C. K. Lee, B. Lee, J. Ihm, and S. Han, ”Field emission of metal nanowires studied by first-principles methods”, Nanotech. 18, 475706 (2007).
[4-7] J. F. Smith, S. Schultz, D. R. Fredkin, D. P. Kern, S. A. Pishton and H. Schmid, ”Hysteresis in lithographic arrays of permalloy particles: Experiment and theory”, J. Appl. Phys. 69, 5262 (1991).
[4-8] M. Calleja, M. Tello, J. Anguita, F. Garcia and R. Garcia, ”Fabrication of gold nanowires on insulating substrates by field-induced mass transport”, Appl. Phys. Lett. 79, 2471 (2001).
[4-9] J. Lin, J. P. Bird, L. Rotkina and B. A. Bennett, ”Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects”, Appl. Phys. Lett. 82, 802 (2003).
[4-10] Y. Zhang, A. Chang, J. Cao, Q. Wang, K. Woong and Y. Li, ”Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett. 79, 3155 (2001).
[4-11] T. T. Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi and L. K. Elbaum, ”Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates”, Science 290, 2126 (2000).
[4-12] R. V. Parthasarathy and C. R. Martin, ”Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization”, Nature 369, 298 (1984).
[4-13] J. Li, T. L. Haslett and M. Moskovits, ”Nanoscale electroless metal deposition in aligned carbon nanotubes”, Chem. Mater. 10, 1963 (1998).
[4-14] T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, ”Fabrication and magnetic properties of arrays of metallic nanowires”, Science 261, 1316 (1993).
[4-15] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer, and H. Kronmuller, ”Hexagonally ordered 100 nm period nickel nanowire arrays”, Appl. Phys. Lett. 79, 1360 (2001).
[4-16] X. Zhao, J. L. Sun, and J. L. Zhu, ”Field-induced semiconductor-metal transition in individual NiO–Ni Schottky nanojunction”, Appl. Phys. Lett. 93, 152107 (2008).
[4-17] H. S. Park, K. Gall, and J. A. Zimmerman, ”Shape memory and pseudoelasticity in metal nanowires”, Phys. Rev. Lett. 95, 255504 (2005).
[4-18] A. K. Wanekaya, W. Chen, N. V. Myung, A. Mulchandani, ”Nanowire-based electrochemical biosensors”, Electroanalysis 18, 533 (2008).
[4-19] J. Joo, S. J. Lee, D. H. Park, J. Y. Lee, T. J. Lee, S. H. Seo, and C. J. Lee, ”Nanotubes of conducting PPy were synthesized using the electrochemical polymerization method”, Electrochem. Solid State Lett. 8, H39 (2005).
[4-20] M. Pisarek, M. Janik-Czachor, and M. Donten, ”Local characterization of electrodeposited Ni–W amorphous alloys by Auger microanalysis”, Surface and Coatings Technology 202, 1980 (2008).
[4-21] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C T Lim, V. B. C Tan, J. T. L. Thong, and C. H. Sow, ”Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films”, Nanotech. 16, 88 (2005).
[4-22] B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, ”Field emission from tetrahedral amorphous carbon”, Appl. Phys. Lett. 71, 1430 (1997).
[4-23] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, ”Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76, 2071 (2000).
[4-24] K. Teo, M. Chhowalla, G. Amaratunga, and W. Milne, ”Field emission from dense, sparse, and patterned arrays of carbon nanofibers”, Appl. Phys. Lett. 80, 2011 (2002).
[4-25] J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Châtelain, ”Tuning the field emission properties of patterned carbon nanotube films”, Adv. Mater. 13, 184 (2001).
[4-26] D. Hong, M. Asiam, M. Feldmann and M. Olinger, ”Simulations of fabricated field emitter structures”, J. Vac. Sci. Technol. B 12, 764 (1994).
[5-1] C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, C. L. Chen., J. J. Wu, H. I. Wen and W. F. Pong, ”Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime”, Appl. Phys. Lett. 88, 241905 (2006).
[5-2] A.Ranga Rao, and V. Dutta, ”Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles”, Nanotechnol. 19, 445712 (2008).
[5-3] J. F. Smith, S. Schultz, D.R. Fredkin, D.P. Kern, S.A. Pishton, and H. Schmid, ”Hysteresis in lithographic arrays of permalloy particles: Experiment and theory”, J. Appl. Phys. 69, 5262 (1991).
[5-4] H. G. Choi, Y. H. Jung, and D. K. Kim, ”Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet”, J. Am. Ceram. Soc. 88, 1684 (2005).
[5-5] X. L. Li, J. F. Liu, and Y. D. Li, ”Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem. 42, 921 (2003).
[5-6] T. T. Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi and L. K. Elbaum, ”Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates”, Science 290, 2126 (2000).
[5-7] Y. Zhang, G. Li, Y. Wu, B. Zhang, W. Song, L. Zhang, ”Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes”, Adv. Mater. 14, 1227 (2002).
[5-8] D. Adler, J. Feinleib, ”Electrical and optical properties of narrow-band materials”, Physical Review B 2, 3112 (1970).
[5-9] Y. Lin, T. Xiea, B. Chenga, B. Genga and L. Zhanga, ”On the absolute absorption cross-section of SF5CF3”, Chemical Physics Letters 380, 512 (2003).
[5-10] T. S. Mintz, Y. V. Bhargava, S. A. Thorne, R. Chopdekar, V. Radmilovic, Y. Suzuki, and T. M. Devine, ”Electrochemical synthesis of functionalized nickel oxide nanowires”, Electrochem. Solid-State Lett. 8, D26 (2005).
[5-11] F. Li, H.Y. Chen, C.M. Wang, and K.A. Hu, ”A novel modified NiO cathode for molten carbonate fuel cells”, J. Electroanul. Chem. 531, 53 (2002).
[5-12] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, ”Sensing characteristics of NiO thin films as NO2 gas sensor”, Thin Solid films 418, 9 (2002).
[5-13] Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, ”A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98, 041301 (2005).
[5-14] A. Nadarajah, R.C. Word, J. Meiss, and R. Könenkamp, ”Flexible inorganic nanowire light-emitting diode”, Nano Lett. 8, 534 (2008).
[5-15] X. Ju, W. Feng, K. Varutt, T. Hori, A. Fujii, and M. Ozaki, ”Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices”, Nanotechnol. 19, 435706 (2008).
[5-16] M. S. White, et al., ”Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer”, Appl. Phys. Lett. 89, 143517 (2006).
[6-1] Y. W. Heo, D. P. Nortona, L.C. Tiena, Y. Kwona, B. S. Kangb, F. Renb, S. J. Peartona, and J. R. LaRoche, ”ZnO nanowire growth and devices”, Mater. Sci. Eng. 47, 1 (2004).
[6-2] Z. L. Wang, and J. Song, ”Piezoelectric nanogenerators based on zinc oxide nanowire arrays”, Science 312, 242 (2006).
[6-3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, ”Room-temperature ultraviolet nanowire nanolasers”, Science 292, 1897 (2001).
[6-4] Z. W. Pan, Z. R. Dai, and Z. L. Wang, ”Nanobelts of semiconducting Oxides”, Science 291, 1947 (2001).
[6-5] M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, ”Optoelectronic properties of three-dimensional ZnO hybrid structure”, Appl. Phys. Lett. 86, 103105 (2005).
[6-6] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, ”Well-aligned ZnO nanowire arrays fabricated on silicon substrates”, Adv. Funct. Mater. 14, 589 (2004).
[6-7] L. Vayssieres, ”Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater. 15, 464 (2003).
[6-8] D. Adler, J. Feinleib, ”Electrical and optical properties of narrow-band materials”, Physical Review B 2, 3112 (1970).
[6-9] T. S. Mintz, Y. V. Bhargava, S. A. Thorne, R. Chopdekar, V. Radmilovic, Y. Suzuki, and T. M. Devine, ”Electrochemical synthesis of functionalized nickel oxide nanowires”, Electrochem. Solid-State Lett. 8, D26 (2005).
[6-10] F. Li, H.Y. Chen, C.M. Wang, and K.A. Hu, ”A novel modified NiO cathode for molten carbonate fuel cells”, J. Electroanul. Chem. 531, 53 (2002).
[6-11] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, ”Sensing characteristics of NiO thin films as NO2 gas sensor”, Thin Solid films 418, 9 (2002).
[7-1] Y. W. Heo, D. P. Nortona, L.C. Tiena, Y. Kwona, B. S. Kangb, F. Renb, S. J. Peartona, and J. R. LaRoche, ”ZnO nanowire growth and devices”, Mater. Sci. Eng. 47, 1 (2004).
[7-2] Z. L. Wang, and J. Song, ”Piezoelectric nanogenerators based on zinc oxide nanowire arrays”, Science 312, 242 (2006).
[7-3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, ”Room-temperature ultraviolet nanowire nanolasers”, Science 292, 1897 (2001).
[7-4] Z. W. Pan, Z. R. Dai, and Z. L. Wang, ”Nanobelts of semiconducting oxides”, Science 291, 1947 (2001).
[7-5] Z. Fan, and J. G. Lua, ”Gate-refreshable nanowire chemical sensors”, Appl. Phys. Lett. 86, 123510 (2005).
[7-6] D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, ”Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells”, Adv. Funct. Mater. 17, 264 (2007).
[7-7] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, ”Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer”, J. Phys. Chem. B 110, 7635 (2006).
[7-8] M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, ”Optoelectronic properties of three-dimensional ZnO hybrid structure”, Appl. Phys. Lett. 86 , 103105 (2005).
[7-9] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, ”Well-aligned ZnO nanowire arrays fabricated on silicon substrates”, Adv. Funct. Mater. 14, 589 (2004).
[7-10] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, ”Optically pumped lasing of ZnO at room temperature”, Appl. Phys. Lett. 70, 2230 (1997).
[7-11] L. Vayssieres, ”Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater. 15, 464 (2003).
[7-12] H. Gomez and M. de la L. Olvera, ”Ga-doped ZnO thin films: Effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties”, Mater. Sci. Eng. B 134, 20 (2006).
[7-13] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, ”ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett. 91, 231113 (2007).
[7-14] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, ”Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates”, Appl. Phys. Lett. 83, 4719 (2003).
[7-15] D. C. Kim, W. S. Han, B. H. Kong, H. K. Choa, and C. H. Hong, ”Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition”, Physica B 401, 386 (2007).
[7-16] Z. Fang, K. Tang, G. Shen, D. Chen, R. Kong, and S. Lei, ”Self-assembled ZnO 3D flowerlike nanostructures”, Mater. Lett. 60, 2530 (2006).
[7-17] M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, ”Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes”, Appl. Phys. Lett. 88, 202105 (2006).
[7-18] C. Y. Chang, F. C. Tsao, C. J. Pan, G. C. Chi, H. T. Wang, J. J. Chen, F. Ren, D. P. Norton, S. J. Pearton, K. H. Chen, and L. C. Chen, ”Electroluminescence from ZnO nanowire/polymer composite p-n junction”, Appl. Phys. Lett. 88, 173503 (2006).
[7-19] C. H. Ku, and J. J. Wu, ”Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates”, J. Phys. Chem. B 110, 12981 (2006).
[7-20] T. Youngjo, and Y. Kijung, ”Controlled growth of well-aligned ZnO nanorod array using a novel solution method”, J. Phys. Chem. B 109, 19263 (2005).
[7-21] E. U. Husnu, H. Pritesh, R. Nalin, D. Sharvari, I. M. William, and A. J. A. Gehan, ”Rapid synthesis of aligned zinc oxide nanowires”, Nanotechnology, 19, 255608 (2008).
[7-22] J. M. Jang, J. Y. Kim, and W. G. Jung, ”Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process”, Thin Solid Films 516, 8524 (2008).
[7-23] T. Nakayama, M. Murayama, ”Electronic structures of hexagonal ZnO/GaN interfaces”, J. Cryst. Growth 214, 299 (2000).