| 研究生: |
呂意嫻 Lu, Yi-Sian |
|---|---|
| 論文名稱: |
介白素-20在瀰漫性大型B 細胞淋巴癌中的角色 The Roles of Interleukin-20 in Diffuse Large B-Cell Lymphoma |
| 指導教授: |
張孔昭
Chang, Kung-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | DLBCL (瀰漫性大 B 細胞淋巴瘤) 、細胞激素 、IL-20 、免疫組織化學 、預後良好 、細胞週期調控 |
| 外文關鍵詞: | DLBCL (diffuse large B-cell lymphoma), cytokine, IL-20, immunohistochemistry, favorable prognosis, cell cycle regulation |
| 相關次數: | 點閱:89 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
瀰漫性大 B 細胞淋巴瘤 (DLBCL) 是全球最常見的淋巴瘤類型,約佔所有淋巴 瘤病例的 40%。儘管細胞激素與淋巴細胞具有密切的免疫關係,但它們在淋巴瘤發病 機制的作用卻很少被提及。我們意外地在反應性生發中心 (GCs) 中發現了 介白素 (IL)-20 的過度表達;因此,我們假設 IL-20 對於淋巴瘤的生成扮演重要的角色。 在這項研究中,我們發現 IL-20 在 GC 衍生的淋巴瘤中頻繁表達,包括濾泡性淋巴 瘤(94%)、瀰漫性大 B 細胞淋巴瘤(DLBCL,48%)、伯基特氏淋巴瘤(81%)和 霍奇金氏淋巴瘤(50%),以及小淋巴細胞淋巴瘤 (50%)、套細胞淋巴瘤 (57%) 和淋 巴結邊緣區淋巴瘤 (56%)。我們也發現 IL-20 在生發中心 B 細胞 (GCB) 中的表達 比在非 GCB 亞型中更頻繁(16/26 [62%] vs. 24/64 [38%],p =0.038)並與較低的結 外侵犯率 (p=0.009)、骨髓侵犯率 (p=0.040) 和更好的總體生存率 (p=0.020) 相關。 從機制上來說,IL-20 過表達促進 G1 細胞週期停滯和隨後的 DLBCL 細胞凋亡,反 之亦然。此外,IL-20 過表達透過活化 Caspase-3、7、8、9 和下游切割產物進行內在 和外在細胞凋亡途徑。總結來說,IL-20 可能與淋巴瘤發生有關,透過調節細胞週期 並抑制 DLBCL 生長,可作為 DLBCL 患者的預後標誌物。
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, accounting for approximately 40% of all lymphoma cases. Although cytokines have a close immunological relationship with lymphocytes, their role in the pathogenesis of lymphoma has been rarely addressed. We have accidentally found overexpression of IL-20 in reactive germinal centers (GCs); we, thus, hypothesized that IL-20 may play a role in GC- derived lymphomas. In this study, we found that IL-20 was expressed frequently in GC- derived lymphomas, including follicular lymphoma (94%), diffuse large B-cell lymphoma (48%), Burkitt lymphoma (81%), and Hodgkin lymphoma (50%), as well as a subset of small lymphocytic lymphoma (50%), mantle cell lymphoma (57%), and nodal marginal zone lymphoma (56%). We further found IL-20 expression was more frequently in germinal center B-cell (GCB) than in non-GCB subtype (16/26 [62%] vs. 24/64 [38%], p=0.038) and associated with a lower rate of extranodal involvement (p=0.009), bone marrow involvement (p=0.040), and better overall survival (p=0.020). Mechanistically, IL-20 overexpression promoted G1 cell cycle arrest and subsequent apoptosis of DLBCL cells and vice versa in vitro. In addition, overexpression of IL-20 induced either intrinsic and extrinsic apoptosis pathway by activating caspase-3,7,8,9 and downstream substrate cleavage and vice versa. We conclude that IL-20 may be involved in lymphomagenesis and plays an inhibitory role in DLBCL growth, probably through cell cycle regulation, and may be useful as a prognostic marker in patients with DLBCL.
1. R.L. Siegel, K.D. Miller, H.E. Fuchs, et al., Cancer statistics, 2022. CA Cancer J Clin, 2022. 72(1): p. 7-33.
2. S.H. Swerdlow, E. Campo, S.A. Pileri, et al., The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood, 2016. 127(20): p. 2375-90.
3. K.C. Chang, G.C. Huang, D. Jones, et al., Distribution and prognosis of who lymphoma subtypes in taiwan reveals a low incidence of germinal-center derived tumors. Leuk Lymphoma, 2004. 45(7): p. 1375-84.
4. H. Tilly, M. Gomes Da Silva, U. Vitolo, et al., Diffuse large b-cell lymphoma (dlbcl): Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 2015. 26: p. v116-v125.
5. G. Kanas, W. Ge, R.G.W. Quek, et al., Epidemiology of diffuse large b-cell lymphoma (dlbcl) and follicular lymphoma (fl) in the united states and western europe: Population-level projections for 2020–2025. Leukemia & Lymphoma, 2022. 63(1): p. 54-63.
6. B. Coiffier, E. Lepage, J. Briere, et al., Chop chemotherapy plus rituximab compared with chop alone in elderly patients with diffuse large-b-cell lymphoma. N Engl J Med, 2002. 346(4): p. 235-42.
7. A. Carbone, A. Gloghini, Y.L. Kwong, et al., Diffuse large b cell lymphoma: Using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann Hematol, 2014. 93(8): p. 1263-77.
8. K. Basso and R. Dalla-Favera, Germinal centres and b cell lymphomagenesis. Nat Rev Immunol, 2015. 15(3): p. 172-84.
9. R.D. Morin, M. Mendez-Lago, A.J. Mungall, et al., Frequent mutation of histone-modifying genes in non-hodgkin lymphoma. Nature, 2011. 476(7360): p. 298-303.
10. J.G. Lohr, P. Stojanov, M.S. Lawrence, et al., Discovery and prioritization of somatic mutations in diffuse large b-cell lymphoma (dlbcl) by whole-exome sequencing. Proc Natl Acad Sci U S A, 2012. 109(10): p. 3879-84.
11. R.D. Morin, K. Mungall, E. Pleasance, et al., Mutational and structural analysis of diffuse large b-cell lymphoma using whole-genome sequencing. Blood, 2013. 122(7): p. 1256-65.
12. A.A. Alizadeh, M.B. Eisen, R.E. Davis, et al., Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 2000. 403(6769): p. 503-11.
13. R.M. Young, A.L. Shaffer, 3rd, J.D. Phelan, et al., B-cell receptor signaling in diffuse large b-cell lymphoma. Semin Hematol, 2015. 52(2): p. 77-85.
14. J.R. Muppidi, R. Schmitz, J.A. Green, et al., Loss of signalling via gα13 in germinal centre b-cell-derived lymphoma. Nature, 2014. 516(7530): p. 254-8.
15. A. Ortega-Molina, I.W. Boss, A. Canela, et al., The histone lysine methyltransferase kmt2d sustains a gene expression program that represses b cell lymphoma development. Nat Med, 2015. 21(10): p. 1199-208.
16. G.P. Souroullas, W.R. Jeck, J.S. Parker, et al., An oncogenic ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat Med, 2016. 22(6): p. 632-40.
17. J. Zhang, D. Dominguez-Sola, S. Hussein, et al., Disruption of kmt2d perturbs germinal center b cell development and promotes lymphomagenesis. Nat Med, 2015. 21(10): p. 1190-8.
18. R. Schmitz, G.W. Wright, D.W. Huang, et al., Genetics and pathogenesis of diffuse large b-cell lymphoma. New England Journal of Medicine, 2018. 378(15): p. 1396-1407.
19. S. Rutz, X. Wang, and W. Ouyang, The il-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol, 2014. 14(12): p. 783-95.
20. G. Gallagher, H. Dickensheets, J. Eskdale, et al., Cloning, expression and initial characterization of interleukin-19 (il-19), a novel homologue of human interleukin-10 (il-10). Genes Immun, 2000. 1(7): p. 442-50.
21. H. Blumberg, D. Conklin, W.F. Xu, et al., Interleukin 20: Discovery, receptor identification, and role in epidermal function. Cell, 2001. 104(1): p. 9-19.
22. K. Stirm, P. Leary, K. Bertram, et al., Tumor cell-derived il-10 promotes cell-autonomous growth and immune escape in diffuse large b-cell lymphoma. Oncoimmunology, 2021. 10(1): p. 2003533.
23. B.A. Fitch, M. Zhou, J. Situ, et al., Decreased il-10 accelerates b-cell leukemia/lymphoma in a mouse model of pediatric lymphoid leukemia. Blood Adv, 2022. 6(3): p. 854-865.
24. J.Y. Blay, N. Burdin, F. Rousset, et al., Serum interleukin-10 in non-hodgkin's lymphoma: A prognostic factor. Blood, 1993. 82(7): p. 2169-74.
25. E. Lech-Maranda, J. Bienvenu, A.S. Michallet, et al., Elevated il-10 plasma levels correlate with poor prognosis in diffuse large b-cell lymphoma. Eur Cytokine Netw, 2006. 17(1): p. 60-6.
26. K. Wolk, S. Kunz, K. Asadullah, et al., Cutting edge: Immune cells as sources and targets of the il-10 family members? J Immunol, 2002. 168(11): p. 5397-402.
27. F. Wang, E. Lee, M.A. Lowes, et al., Prominent production of il-20 by cd68+/cd11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J Invest Dermatol, 2006. 126(7): p. 1590-9.
28. K. Wolk, E. Witte, K. Warszawska, et al., The th17 cytokine il-22 induces il-20 production in keratinocytes: A novel immunological cascade with potential relevance in psoriasis. Eur J Immunol, 2009. 39(12): p. 3570-81.
29. K. Wolk, K. Witte, E. Witte, et al., Maturing dendritic cells are an important source of il-29 and il-20 that may cooperatively increase the innate immunity of keratinocytes. J Leukoc Biol, 2008. 83(5): p. 1181-93.
30. D.W. Hunt, W.A. Boivin, L.A. Fairley, et al., Ultraviolet b light stimulates interleukin-20 expression by human epithelial keratinocytes. Photochem Photobiol, 2006. 82(5): p. 1292-300.
31. S.C. Liang, X.Y. Tan, D.P. Luxenberg, et al., Interleukin (il)-22 and il-17 are coexpressed by th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med, 2006. 203(10): p. 2271-9.
32. S.M. Sa, P.A. Valdez, J. Wu, et al., The effects of il-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol, 2007. 178(4): p. 2229-40.
33. K. Wolk, E. Witte, E. Wallace, et al., Il-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: A potential role in psoriasis. Eur J Immunol, 2006. 36(5): p. 1309-23.
34. G. Pickert, C. Neufert, M. Leppkes, et al., Stat3 links il-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med, 2009. 206(7): p. 1465-72.
35. G.F. Sonnenberg, L.A. Fouser, and D. Artis, Border patrol: Regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by il-22. Nat Immunol, 2011. 12(5): p. 383-90.
36. K. Boniface, F.X. Bernard, M. Garcia, et al., Il-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol, 2005. 174(6): p. 3695-702.
37. J. Parrish-Novak, W. Xu, T. Brender, et al., Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem, 2002. 277(49): p. 47517-23.
38. W. Ouyang, S. Rutz, N.K. Crellin, et al., Regulation and functions of the il-10 family of cytokines in inflammation and disease. Annu Rev Immunol, 2011. 29: p. 71-109.
39. R. Sabat, W. Ouyang, and K. Wolk, Therapeutic opportunities of the il-22-il-22r1 system. Nat Rev Drug Discov, 2014. 13(1): p. 21-38.
40. R.X. Leng, H.F. Pan, J.H. Tao, et al., Il-19, il-20 and il-24: Potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets, 2011. 15(2): p. 119-26.
41. A.G. Shabgah, J.G. Navashenaq, O.G. Shabgah, et al., Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev, 2017. 16(12): p. 1209-1218.
42. U.M. Wegenka, Il-20: Biological functions mediated through two types of receptor complexes. Cytokine Growth Factor Rev, 2010. 21(5): p. 353-63.
43. M.Y. Hsieh, W.Y. Chen, M.J. Jiang, et al., Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun, 2006. 7(3): p. 234-42.
44. Y.H. Hsu, Y.S. Chiu, W.Y. Chen, et al., Anti-il-20 monoclonal antibody promotes bone fracture healing through regulating il-20-mediated osteoblastogenesis. Sci Rep, 2016. 6: p. 24339.
45. Y.H. Hsu, C.H. Hsing, C.F. Li, et al., Anti-il-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol, 2012. 188(4): p. 1981-91.
46. H. Blumberg, D. Conklin, W. Xu, et al., Interleukin 20: Discovery, receptor identification, and role in epidermal function. Cell, 2001. 104(1): p. 9-19.
47. A.M. Baird, S.G. Gray, and K.J. O'byrne, Il-20 is epigenetically regulated in nsclc and down regulates the expression of vegf. Eur J Cancer, 2011. 47(12): p. 1908-18.
48. Y.H. Hsu, C.C. Wei, D.B. Shieh, et al., Anti-il-20 monoclonal antibody alleviates inflammation in oral cancer and suppresses tumor growth. Mol Cancer Res, 2012. 10(11): p. 1430-9.
49. S.J. Lee, E.J. Lee, S.K. Kim, et al., Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of il-5, il-20, and il-28a. PLoS One, 2012. 7(9): p. e40267.
50. S.J. Lee, S.C. Cho, E.J. Lee, et al., Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (erk)-mediated mmp-9 protein expression leading to nuclear factor (nf-κb) activation by inducing the up-regulation of p21(waf1) protein expression. J Biol Chem, 2013. 288(8): p. 5539-52.
51. E. Caparrós and R. Francés, The interleukin-20 cytokine family in liver disease. Front Immunol, 2018. 9: p. 1155.
52. C.P. Hans, D.D. Weisenburger, T.C. Greiner, et al., Confirmation of the molecular classification of diffuse large b-cell lymphoma by immunohistochemistry using a tissue microarray. Blood, 2004. 103(1): p. 275-82.
53. A.D. Zelenetz, R.T. Hoppe, and N.N.-H.s.L.P.G. Panel, Nccn: Non-hodgkin's lymphoma. Cancer Control, 2001. 8(6 Suppl 2): p. 102-13.
54. C. Chang, C.H. Lin, A.L. Cheng, et al., Primary central nervous system diffuse large b-cell lymphoma has poorer immune cell infiltration and prognosis than its peripheral counterpart. Histopathology, 2015. 67(5): p. 625-35.
55. S.W. Lu, H.C. Pan, Y.H. Hsu, et al., Il-20 antagonist suppresses pd-l1 expression and prolongs survival in pancreatic cancer models. Nat Commun, 2020. 11(1): p. 4611.
56. C.C. Wei, W.Y. Chen, Y.C. Wang, et al., Detection of il-20 and its receptors on psoriatic skin. Clin Immunol, 2005. 117(1): p. 65-72.
57. S.H. Swerdlow, E. Campo, N.L. Harris, et al., Who classification of tumours of haematopoietic and lymphoid tissues (revised 4th edition). 2017, Lyon: IARC.
58. H.C. Lin, Y. Chang, R.Y. Chen, et al., Epstein-barr virus latent membrane protein-1 upregulates autophagy and promotes viability in hodgkin lymphoma: Implications for targeted therapy. Cancer Sci, 2021. 112(4): p. 1589-1602.
59. N. Hadife, C. Nemos, J.P. Frippiat, et al., Interleukin-24 mediates apoptosis in human b-cells through early activation of cell cycle arrest followed by late induction of the mitochondrial apoptosis pathway. Leuk Lymphoma, 2013. 54(3): p. 587-97.
60. Y.C. Liao, W.G. Liang, F.W. Chen, et al., Il-19 induces production of il-6 and tnf-alpha and results in cell apoptosis through tnf-alpha. J Immunol, 2002. 169(8): p. 4288-97.
61. Y.H. Hsu and M.S. Chang, The therapeutic potential of anti-interleukin-20 monoclonal antibody. Cell Transplant, 2014. 23(4-5): p. 631-9.
62. C. Huang, Germinal center reaction. Adv Exp Med Biol, 2020. 1254: p. 47-53.
63. A. Månsson, M. Adner, U. Höckerfelt, et al., A distinct toll-like receptor repertoire in human tonsillar b cells, directly activated by pamcsk, r-837 and cpg-2006 stimulation. Immunology, 2006. 118(4): p. 539-48.
64. H. Qi, J.G. Egen, A.Y. Huang, et al., Extrafollicular activation of lymph node b cells by antigen-bearing dendritic cells. Science, 2006. 312(5780): p. 1672-6.
65. L. Li, J. Zhang, J. Chen, et al., B-cell receptor-mediated nfatc1 activation induces il-10/stat3/pd-l1 signaling in diffuse large b-cell lymphoma. Blood, 2018. 132(17): p. 1805-1817.
66. H. Wei, B. Li, A. Sun, et al., Interleukin-10 family cytokines immunobiology and structure. Adv Exp Med Biol, 2019. 1172: p. 79-96.
67. Y. Tsujimoto, Role of bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes Cells, 1998. 3(11): p. 697-707.
68. E. Volpe, M. Sambucci, L. Battistini, et al., Fas–fas ligand: Checkpoint of t cell functions in multiple sclerosis. Frontiers in Immunology, 2016. 7.
69. R. Kohnken, P. Porcu, and A. Mishra, Overview of the use of murine models in leukemia and lymphoma research. Front Oncol, 2017. 7: p. 22.
70. A. Richmond and Y. Su, Mouse xenograft models vs gem models for human cancer therapeutics. Dis Model Mech, 2008. 1(2-3): p. 78-82.
71. J.P. Gillet, A.M. Calcagno, S. Varma, et al., Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A, 2011. 108(46): p. 18708-13.
72. V.C. Daniel, L. Marchionni, J.S. Hierman, et al., A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res, 2009. 69(8): p. 3364-73.