簡易檢索 / 詳目顯示

研究生: 歐懿丹
Ou, Yi-Dan
論文名稱: 研究登革病毒感染單核吞噬細胞時轉錄因子NFAT的活化及其角色
Studying the Activation of NFAT and its Role in Mononuclear Phagocytes During Dengue Virus Infection
指導教授: 林秋烽
Lin, Chiou-Feng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 68
中文關鍵詞: 登革病毒NFAT乙型干擾素肝醣合成酶激酶3
外文關鍵詞: Dengue virus, Nuclear factor of activated T-cells, Interferon-beta, Glycogen synthase kinase-3
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒為人類重要的致病原,藉由宿主因子參與病毒的複製。透過抑制病毒複製可做為對抗登革病毒減少發病率與死亡率的策略之一,但是目前疫苗或是可以對抗登革病毒的製劑都還只限於動物實驗或是臨床試驗階段。藉由大規模篩檢細胞轉錄因子的研究證實在登革病毒感染單核吞噬細胞時會活化細胞內轉錄因子NFAT。研究發現登革病毒會透過傳統路徑係經由脾臟酪胺酸酶 (Syk)/磷脂質脂解酶 (PLC)/三磷酸肌醇 (IP3)/鈣離子/鈣調磷酸酶 (calcineurin) 調控NFATc1,並且也會透過非正規路徑係經蛋白質激酶A (PKA) 活化磷脂酰肌醇3-激酶 (PI3K) 進而抑制肝醣合成酶激酶3 GSK-3) 而維持NFATc1的核內活化態。我們也發現到病毒的外套膜蛋白 (envelope protein) 結合宿主C型凝集素受器 (CLEC5A) 活化脾臟酪胺酸酶訊號而調控NFATc1。重要的是調節NFATc1在細胞內的表現量可以影響登革病毒的複製。NFATc1的活化並不會影響病毒進入細胞,但是卻會影響乙型干擾素的反應進而幫助病毒的複製。另外,抑制NFATc1的路徑並不會影響到宿主細胞因感染病毒進而活化相關轉錄因子干擾素調控因子3 (IRF3)。相對的,使用聚肌胞苷酸 (poly(I:C)) 刺激單核吞噬細胞並不會活化NFATc1,但是過度活化NFATc1可以減少聚肌胞苷酸誘導的乙型干擾素反應。本論文的結果證實了NFATc1新穎的角色係在登革病毒感染單核吞噬細胞中NFATc1可影響乙型干擾素的反應進而助益於登革病毒的複製。

    Dengue virus (DENV), an important human pathogen, may utilize host factors to facilitate viral replication. Inhibiting viral replication is one of strategies to reduce morbidity and mortality associated with DENV infection; however, no vaccine or anti-DENV drugs are available clinically. By screening a panel of transcriptional factors, we found nuclear factor of activated T-cells (NFATc1) was unusually activated by DENV infection in mononuclear phagocytes. DENV triggered NFATc1 activation canonically in spleen tyrosine kinase/phospholipase C/inositol-1,4,5-triphosphate/calcium/calcineurin-regulated pathway as well as synergistically by protein kinase A/phosphatidylinositide 3-kinase/glycogen synthase kinase-3-regualted manner. The envelope protein of DENV determined NFATc1 activation through C-type lectin domain family 5 member A/spleen tyrosine kinase signaling. Manipulating NFATc1 caused effects on DENV replication. NFATc1 activation was unable to affect DENV entry but regulated DENV-induced IFN-β response to facilitate DENV replication. Infection of DENV did not cause interference on interferon regulatory transcription factor (IRF) 3 activation. In contrast with DENV, treatment of polyinosinic-polycytidylic acid (poly(I:C)) did not cause NFATc1 activation but NFATc1 overexpression reduced poly(I:C)-induced IFN-β response. These results demonstrate a novel and the pathogenic role of NFATc1, which facilitates DENV replication by altering IFN-β response in mononuclear phagocytes.

    Abstract in Chinese I Abstract in English II Acknowledgment III Abbreviations IV I. Introduction 1 I-1. Virology, Pathology, and Epidemiology 1 I-2. Pathogenesis and Immune Escape 3 I-3. Host Factors 5 I-4. NFAT Signaling 6 I-5. Interferon 7 II. Study Objective and Specific Aims 8 II-1. Objective 8 II-2. Specific Aims 8 Specific Aim 1: To check the activation of TFs by DENV infection. 8 Specific Aim 2: To clarify the upstream pathways that regulate NFATc1 activation during DENV infection. 8 Specific Aim 3: To clarify the role of NFATc1 for DENV infection 8 III. Materials and Methods 9 III-1. Cell cultures 9 III-2. Virus culture 9 III-3. Plaque assay 10 III-4. DENV infection 10 III-5. Heat-inactivated DENV 10 III-6. Western blotting 10 III-5. Luciferase reporter assay 11 III-6. Immunostaining and cell Imaging 11 III-7. Transmission electron microscopy 12 III-8. Flow cytometry 12 III-9. RNA interference 13 III-10. Calcineurin cellular activity assay 13 III-11. Reagents and antibodies 14 III-12. Promoter binding sites prediction 14 III-13. Statistical analysis 15 IV. Results 16 IV-1. DENV infection in murine mononuclear phagocytes 16 IV-2. Activation of NFATc1 in DENV-infected murine and human mononuclear phagocytes 16 IV-3. The involvement of PLCγ-IP3-IP3R signaling pathway in DENV-induced calcium-calcineurin-regulated NFAT activation 17 IV-4. The involvement of PKA- and PI3K-PKB-mediated GSK-3β inactivation in DENV-induced NFAT activation 18 IV-5. Activation of NFAT caused by DENV E proetin 18 IV-6. The involvement of CLEC5A/Syk signaling in DENV-induced NFAT activation 19 IV-7. The contribution of NFATc1 for DENV infection 20 IV-8. The independence of NFATc1 for DENV entry and attachment 20 IV-9. An inhibitory role of NFAT in type I IFN-β response 21 IV-10. The activation of IFN-β signaling is independent of NFATc1 21 IV-11. The hypothesis of NFATc1 compete with IFN-β enhanceosome 22 V. Discussion 23 VI. Conclusion and Implication 28 References 29 Figures and Figure Legends 44 Figure 1. DENV infects murine mononuclear phagocytes. 44 Figure 2. DENV infection activates NFATc1 in murine and human mononuclear phagocytes. 46 Figure 3. DENV infection causes calcium-calcineurin-regulated NFAT activation via PLCγ-IP3- IP3R signaling pathway. 47 Figure 4. DENV infection induces PKA- and PI3K-PKB-mediated GSK-3β inactivation to facilitate NFAT activation. 48 Figure 5. DENV E proetin determines NFAT activation. 49 Figure 6. CLEC5A-Syk signaling mediates DENV-induced NFAT activation. 50 Figure 7. NFATc1 enhances DENV infection. 51 Figure 8. Activation of NFATc1 is not required for DENV entry. 52 Figure 9. Activation of NFAT negatively regulates type I IFN-response. 53 Figure 10. NFAT antagonizes type I IFN-βenhanceosome to subvert type I IFN-response. 54 Figure 11. Computational approach for protein binding sites of promoter prediction. 55 Figure 12. Hypothetic model for NFAT regulation and its effects on viral replication in DENVinfected mononuclear phagocytes. 56 Appendix 57 A. Materials 57 A-1 Chemicals 57 A-2 Antibodies 58 A-3 Kits 59 A-4 Consumables 59 A-5 Apparatus 60 B. Methods 61 B-1 Cell culture 61 B-2 Western blot 62 B-3 Lentiviral-based shRNA knockdown 65 CURRICULUM VITAE 68

    Acosta EG, Castilla V, Damonte EB (2008) Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. The Journal of general virology 89: 474-484
    Agarwal R, Elbishbishi EA, Chaturvedi UC, Nagar R, Mustafa AS (1999) Profile of transforming growth factor-beta 1 in patients with dengue haemorrhagic fever. International journal of experimental pathology 80: 143-149
    Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, Neilson JR, Chen L, Heit JJ, Kim SK, Yamasaki N, Miyakawa T, Francke U, Graef IA, Crabtree GR (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441: 595-600
    Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. Journal of virology 83: 5408-5418
    Au WC, Moore PA, Lowther W, Juang YT, Pitha PM (1995) Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proceedings of the National Academy of Sciences of the United States of America 92: 11657-11661
    Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, Jairungsri A, Kanlaya R, Tangthawornchaikul N, Puttikhunt C, Pattanakitsakul SN, Yenchitsomanus PT, Mongkolsapaya J, Kasinrerk W, Sittisombut N, Husmann M, Blettner M, Vasanawathana S, Bhakdi S, Malasit P (2006) Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. The Journal of infectious diseases 193: 1078-1088
    Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300: 1524-1525
    Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275: 1930-1934
    Benarroch D, Egloff MP, Mulard L, Guerreiro C, Romette JL, Canard B (2004) A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. The Journal of biological chemistry 279: 35638-35643
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21: 13-26
    Blackley S, Kou Z, Chen H, Quinn M, Rose RC, Schlesinger JJ, Coppage M, Jin X (2007) Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. Journal of virology 81: 13325-13334
    Brown MG, Hermann LL, Issekutz AC, Marshall JS, Rowter D, Al-Afif A, Anderson R (2011) Dengue virus infection of mast cells triggers endothelial cell activation. Journal of virology 85: 1145-1150
    Brown MG, Huang YY, Marshall JS, King CA, Hoskin DW, Anderson R (2009) Dramatic caspase-dependent apoptosis in antibody-enhanced dengue virus infection of human mast cells. Journal of leukocyte biology 85: 71-80
    Chambers TJ, McCourt DW, Rice CM (1989) Yellow fever virus proteins NS2A, NS2B, and NS4B: identification and partial N-terminal amino acid sequence analysis. Virology 169: 100-109
    Chareonsirisuthigul T, Kalayanarooj S, Ubol S (2007) Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. The Journal of general virology 88: 365-375
    Chaturvedi UC (2009) Shift to Th2 cytokine response in dengue haemorrhagic fever. The Indian journal of medical research 129: 1-3
    Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS (2000) Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS immunology and medical microbiology 28: 183-188
    Chen CL, Lin CF, Wan SW, Wei LS, Chen MC, Yeh TM, Liu HS, Anderson R, Lin YS (2013) Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3beta and NF-kappaB activation. Journal of immunology 191: 1744-1752
    Chen LC, Lei HY, Liu CC, Shiesh SC, Chen SH, Liu HS, Lin YS, Wang ST, Shyu HW, Yeh TM (2006) Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. The American journal of tropical medicine and hygiene 74: 142-147
    Chen RF, Wang L, Cheng JT, Chuang H, Chang JC, Liu JW, Lin IC, Yang KD (2009) Combination of CTLA-4 and TGFbeta1 gene polymorphisms associated with dengue hemorrhagic fever and virus load in a dengue-2 outbreak. Clinical immunology 131: 404-409
    Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453: 672-676
    Chen YC, Wang SY (2002) Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. Journal of virology 76: 9877-9887
    Chin JF, Chu JJ, Ng ML (2007) The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes and infection / Institut Pasteur 9: 1-6
    Chow CW, Rincon M, Cavanagh J, Dickens M, Davis RJ (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278: 1638-1641
    Chungue E, Poli L, Roche C, Gestas P, Glaziou P, Markoff LJ (1994) Correlation between detection of plasminogen cross-reactive antibodies and hemorrhage in dengue virus infection. The Journal of infectious diseases 170: 1304-1307
    Cicala C, Arthos J, Censoplano N, Cruz C, Chung E, Martinelli E, Lempicki RA, Natarajan V, VanRyk D, Daucher M, Fauci AS (2006) HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells. Virology 345: 105-114
    Colpitts TM, Cox J, Nguyen A, Feitosa F, Krishnan MN, Fikrig E (2011) Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector. Virology 417: 179-187
    Crill WD, Roehrig JT (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. Journal of virology 75: 7769-7773
    Cron RQ (2001) HIV-1, NFAT, and cyclosporin: immunosuppression for the immunosuppressed? DNA and cell biology 20: 761-767
    Davis WG, Blackwell JL, Shi PY, Brinton MA (2007) Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. Journal of virology 81: 10172-10187
    De Nova-Ocampo M, Villegas-Sepulveda N, del Angel RM (2002) Translation elongation factor-1alpha, La, and PTB interact with the 3' untranslated region of dengue 4 virus RNA. Virology 295: 337-347
    Dominguez-Villar M, Munoz-Suano A, Anaya-Baz B, Aguilar S, Novalbos JP, Giron JA, Rodriguez-Iglesias M, Garcia-Cozar F (2007) Hepatitis C virus core protein up-regulates anergy-related genes and a new set of genes, which affects T cell homeostasis. Journal of leukocyte biology 82: 1301-1310
    Falconar AK (1997) The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Archives of virology 142: 897-916
    Falgout B, Pethel M, Zhang YM, Lai CJ (1991) Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of virology 65: 2467-2475
    Fernandez-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z (2004) TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue antigens 64: 469-472
    Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi-Castagnoli P (2012) NFAT control of innate immunity. Blood 120: 1380-1389
    Fuentes-Miranda CJ, Sanchez-Garcia FJ, Coker AR, Rojas-Espinosa O, Salinas-Tobon R, Moreno-Altamirano MM (2014) Dengue virus serotype-2 impairs proliferation of healthy donors' T lymphocytes. Intervirology 57: 83-92
    Gagnon SJ, Ennis FA, Rothman AL (1999) Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. Journal of virology 73: 3623-3629
    Gale M, Jr., Sen GC (2009) Viral evasion of the interferon system. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 29: 475-476
    Gomez del Arco P, Martinez-Martinez S, Maldonado JL, Ortega-Perez I, Redondo JM (2000) A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. The Journal of biological chemistry 275: 13872-13878
    Goodridge HS, Simmons RM, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. Journal of immunology 178: 3107-3115
    Graef IA, Gastier JM, Francke U, Crabtree GR (2001) Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proceedings of the National Academy of Sciences of the United States of America 98: 5740-5745
    Green S, Rothman A (2006) Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Current opinion in infectious diseases 19: 429-436
    Guilarde AO, Turchi MD, Siqueira JB, Jr., Feres VC, Rocha B, Levi JE, Souza VA, Boas LS, Pannuti CS, Martelli CM (2008) Dengue and dengue hemorrhagic fever among adults: clinical outcomes related to viremia, serotypes, and antibody response. The Journal of infectious diseases 197: 817-824
    Guo X, Xu Y, Bian G, Pike AD, Xie Y, Xi Z (2010) Response of the mosquito protein interaction network to dengue infection. BMC genomics 11: 380
    Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW (2010) Dengue: a continuing global threat. Nature reviews Microbiology 8: S7-16
    Halstead SB (1989) Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Reviews of infectious diseases 11 Suppl 4: S830-839
    Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Advances in virus research 60: 421-467
    Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. The Lancet infectious diseases 10: 712-722
    Hishiki T, Han Q, Arimoto K, Shimotohno K, Igarashi T, Vasudevan SG, Suzuki Y, Yamamoto N (2014) Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochemical and biophysical research communications 448: 95-100
    Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH (2001) Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. Journal of immunology 166: 1499-1506
    Hoang LT, Lynn DJ, Henn M, Birren BW, Lennon NJ, Le PT, Duong KT, Nguyen TT, Mai LN, Farrar JJ, Hibberd ML, Simmons CP (2010) The early whole-blood transcriptional signature of dengue virus and features associated with progression to dengue shock syndrome in Vietnamese children and young adults. Journal of virology 84: 12982-12994
    Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & development 17: 2205-2232
    Jacobs MG, Robinson PJ, Bletchly C, Mackenzie JM, Young PR (2000) Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 14: 1603-1610
    Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189: 1411-1418
    Jordan JA, Manley K, Dugan AS, O'Hara BA, Atwood WJ (2010) Transcriptional regulation of BK virus by nuclear factor of activated T cells. Journal of virology 84: 1722-1730
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105
    Kerrigan AM, Brown GD (2011) Syk-coupled C-type lectins in immunity. Trends in immunology 32: 151-156
    Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS, Wang L, Sengupta R, Sahasrabudhe S, Randall G, Gribskov M, Kuhn RJ, Perera R, LaCount DJ (2011) A physical interaction network of dengue virus and human proteins. Molecular & cellular proteomics : MCP 10: M111 012187
    King CA, Anderson R, Marshall JS (2002) Dengue virus selectively induces human mast cell chemokine production. Journal of virology 76: 8408-8419
    King CA, Marshall JS, Alshurafa H, Anderson R (2000) Release of vasoactive cytokines by antibody-enhanced dengue virus infection of a human mast cell/basophil line. Journal of virology 74: 7146-7150
    Klomporn P, Panyasrivanit M, Wikan N, Smith DR (2011) Dengue infection of monocytic cells activates ER stress pathways, but apoptosis is induced through both extrinsic and intrinsic pathways. Virology 409: 189-197
    LaFleur C, Granados J, Vargas-Alarcon G, Ruiz-Morales J, Villarreal-Garza C, Higuera L, Hernandez-Pacheco G, Cutino-Moguel T, Rangel H, Figueroa R, Acosta M, Lazcano E, Ramos C (2002) HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue hemorrhagic fever. Human immunology 63: 1039-1044
    Lan NT, Hirayama K (2011) Host genetic susceptibility to severe dengue infection. Tropical medicine and health 39: 73-81
    Law CL, Chandran KA, Sidorenko SP, Clark EA (1996) Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Molecular and cellular biology 16: 1305-1315
    Liew KJ, Chow VT (2004) Differential display RT-PCR analysis of ECV304 endothelial-like cells infected with dengue virus type 2 reveals messenger RNA expression profiles of multiple human genes involved in known and novel roles. Journal of medical virology 72: 597-609
    Liew KJ, Chow VT (2006) Microarray and real-time RT-PCR analyses of a novel set of differentially expressed human genes in ECV304 endothelial-like cells infected with dengue virus type 2. Journal of virological methods 131: 47-57
    Lin CF, Chiu SC, Hsiao YL, Wan SW, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, Liu CC, Lin YS (2005) Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. Journal of immunology 174: 395-403
    Lin CF, Lei HY, Liu CC, Liu HS, Yeh TM, Wang ST, Yang TI, Sheu FC, Kuo CF, Lin YS (2001) Generation of IgM anti-platelet autoantibody in dengue patients. Journal of medical virology 63: 143-149
    Lin CF, Lei HY, Shiau AL, Liu CC, Liu HS, Yeh TM, Chen SH, Lin YS (2003) Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. Journal of medical virology 69: 82-90
    Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC, Hsu TK, Liu HS, Liu CC, Anderson R, Lei HY (2011) Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Experimental biology and medicine 236: 515-523
    Lin YW, Wang KJ, Lei HY, Lin YS, Yeh TM, Liu HS, Liu CC, Chen SH (2002) Virus replication and cytokine production in dengue virus-infected human B lymphocytes. Journal of virology 76: 12242-12249
    Loke H, Bethell D, Phuong CX, Day N, White N, Farrar J, Hill A (2002) Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. The American journal of tropical medicine and hygiene 67: 102-106
    Loke H, Bethell DB, Phuong CX, Dung M, Schneider J, White NJ, Day NP, Farrar J, Hill AV (2001) Strong HLA class I--restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? The Journal of infectious diseases 184: 1369-1373
    Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M, Jr. (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. Journal of virology 82: 335-345
    Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proceedings of the National Academy of Sciences of the United States of America 101: 3414-3419
    Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nature reviews Immunology 5: 472-484
    Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245: 203-215
    Manley K, O'Hara B A, Gee GV, Simkevich CP, Sedivy JM, Atwood WJ (2006) NFAT4 is required for JC virus infection of glial cells. Journal of virology 80: 12079-12085
    Manley K, O'Hara BA, Atwood WJ (2008) Nuclear factor of activated T-cells (NFAT) plays a role in SV40 infection. Virology 372: 48-55
    Markoff LJ, Innis BL, Houghten R, Henchal LS (1991) Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. The Journal of infectious diseases 164: 294-301
    Mazzon M, Jones M, Davidson A, Chain B, Jacobs M (2009) Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. The Journal of infectious diseases 200: 1261-1270
    Medin CL, Fitzgerald KA, Rothman AL (2005) Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. Journal of virology 79: 11053-11061
    Mocsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nature reviews Immunology 10: 387-402
    Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427: 313-319
    Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, Mulder LC, Fernandez-Sesma A, Garcia-Sastre A (2013) Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS pathogens 9: e1003265
    Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nature reviews Immunology 10: 645-656
    Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. Journal of virology 79: 8004-8013
    Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences of the United States of America 100: 14333-14338
    Mustafa AS, Elbishbishi EA, Agarwal R, Chaturvedi UC (2001) Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS immunology and medical microbiology 30: 229-233
    Nasirudeen AM, Wang L, Liu DX (2008) Induction of p53-dependent and mitochondria-mediated cell death pathway by dengue virus infection of human and animal cells. Microbes and infection / Institut Pasteur 10: 1124-1132
    Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS neglected tropical diseases 5: e926
    Nemesio H, Palomares-Jerez F, Villalain J (2012) NS4A and NS4B proteins from dengue virus: membranotropic regions. Biochimica et biophysica acta 1818: 2818-2830
    Netsawang J, Noisakran S, Puttikhunt C, Kasinrerk W, Wongwiwat W, Malasit P, Yenchitsomanus PT, Limjindaporn T (2010) Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus research 147: 275-283
    Ng JK, Zhang SL, Tan HC, Yan B, Maria Martinez Gomez J, Tan WY, Lam JH, Tan GK, Ooi EE, Alonso S (2014) First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PLoS pathogens 10: e1004031
    Oishi K, Inoue S, Cinco MT, Dimaano EM, Alera MT, Alfon JA, Abanes F, Cruz DJ, Matias RR, Matsuura H, Hasebe F, Tanimura S, Kumatori A, Morita K, Natividad FF, Nagatake T (2003) Correlation between increased platelet-associated IgG and thrombocytopenia in secondary dengue virus infections. Journal of medical virology 71: 259-264
    Panne D, Maniatis T, Harrison SC (2007) An atomic model of the interferon-beta enhanceosome. Cell 129: 1111-1123
    Paranjape SM, Harris E (2007) Y box-binding protein-1 binds to the dengue virus 3'-untranslated region and mediates antiviral effects. The Journal of biological chemistry 282: 30497-30508
    Perera R, Kuhn RJ (2008) Structural proteomics of dengue virus. Current opinion in microbiology 11: 369-377
    Polizel JR, Bueno D, Visentainer JE, Sell AM, Borelli SD, Tsuneto LT, Dalalio MM, Coimbra MT, Moliterno RA (2004) Association of human leukocyte antigen DQ1 and dengue fever in a white Southern Brazilian population. Memorias do Instituto Oswaldo Cruz 99: 559-562
    Qing M, Yang F, Zhang B, Zou G, Robida JM, Yuan Z, Tang H, Shi PY (2009) Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein. Antimicrobial agents and chemotherapy 53: 3226-3235
    Raghupathy R, Chaturvedi UC, Al-Sayer H, Elbishbishi EA, Agarwal R, Nagar R, Kapoor S, Misra A, Mathur A, Nusrat H, Azizieh F, Khan MA, Mustafa AS (1998) Elevated levels of IL-8 in dengue hemorrhagic fever. Journal of medical virology 56: 280-285
    Rao A (1994) NF-ATp: a transcription factor required for the co-ordinate induction of several cytokine genes. Immunology today 15: 274-281
    Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230: 244-251
    Rizzardi GP, Harari A, Capiluppi B, Tambussi G, Ellefsen K, Ciuffreda D, Champagne P, Bart PA, Chave JP, Lazzarin A, Pantaleo G (2002) Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. The Journal of clinical investigation 109: 681-688
    Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A (2010) Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. Journal of virology 84: 9760-9774
    Rothman AL (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nature reviews Immunology 11: 532-543
    Saito M, Oishi K, Inoue S, Dimaano EM, Alera MT, Robles AM, Estrella BD, Jr., Kumatori A, Moji K, Alonzo MT, Buerano CC, Matias RR, Morita K, Natividad FF, Nagatake T (2004) Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clinical and experimental immunology 138: 299-303
    Samuel CE (2001) Antiviral actions of interferons. Clinical microbiology reviews 14: 778-809, table of contents
    Scott ES, Malcomber S, O'Hare P (2001) Nuclear translocation and activation of the transcription factor NFAT is blocked by herpes simplex virus infection. Journal of virology 75: 9955-9965
    Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA (2009) Discovery of insect and human dengue virus host factors. Nature 458: 1047-1050
    Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E (2005) Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. Journal of immunology 175: 3946-3954
    Simmons CP, Farrar JJ, Nguyen v V, Wills B (2012) Dengue. The New England journal of medicine 366: 1423-1432
    Stiasny K, Heinz FX (2006) Flavivirus membrane fusion. The Journal of general virology 87: 2755-2766
    Tan BH, Fu J, Sugrue RJ, Yap EH, Chan YC, Tan YH (1996) Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216: 317-325
    Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Current opinion in immunology 14: 111-116
    Tsai CC, Kai JI, Huang WC, Wang CY, Wang Y, Chen CL, Fang YT, Lin YS, Anderson R, Chen SH, Tsao CW, Lin CF (2009a) Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J Immunol 183: 856-864
    Tsai TT, Chuang YJ, Lin YS, Wan SW, Chen CL, Lin CF (2013) An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci 20: 40
    Tsai YT, Chang SY, Lee CN, Kao CL (2009b) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cellular microbiology 11: 604-615
    Wan SW, Lin CF, Yeh TM, Liu CC, Liu HS, Wang S, Ling P, Anderson R, Lei HY, Lin YS (2013) Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association = Taiwan yi zhi 112: 3-11
    WHO (2009) Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. In Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva
    Winkler G, Randolph VB, Cleaves GR, Ryan TE, Stollar V (1988) Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology 162: 187-196
    Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6: 816-820
    Yang TC, Li SW, Lai CC, Lu KZ, Chiu MT, Hsieh TH, Wan L, Lin CW (2013) Proteomic analysis for Type I interferon antagonism of Japanese encephalitis virus NS5 protein. Proteomics 13: 3442-3456
    Yocupicio-Monroy RM, Medina F, Reyes-del Valle J, del Angel RM (2003) Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3' untranslated region RNA. Journal of virology 77: 3067-3076
    Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL (2012) Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS pathogens 8: e1002780
    Zhu J, Shibasaki F, Price R, Guillemot JC, Yano T, Dotsch V, Wagner G, Ferrara P, McKeon F (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93: 851-861

    下載圖示 校內:2019-08-05公開
    校外:2019-08-05公開
    QR CODE