研究生: |
朱建勳 Chu, Chien-Hsun |
---|---|
論文名稱: |
多層透明導電薄膜於不同製程條件及後處理並應用於電致變色元件之研究 Study of the Multilayer Transparent Conducting Thin Films Based on the Different Conditions of Process and Post Treatment for Electrochromic Device Applications |
指導教授: |
黃肇瑞
Huang, Jow-Lay |
共同指導教授: |
吳宏偉
Wu, Hung-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 234 |
中文關鍵詞: | 氧化鋅摻雜鋁薄膜 、透明導電薄膜 、多層結構 、射頻/直流磁控濺鍍 、電致變色元件 、三氧化鎢薄膜 |
外文關鍵詞: | Zinc oxide doped aluminum (AZO), transparent conductive films, multilayer structure, RF/DC magnetron sputtering, electrochromic device, tungsten oxide |
相關次數: | 點閱:142 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電薄膜(Transparent conductive films, TCF)是一種具有高導電度(< 10-3 Ω-cm)以及在可見光範圍(300 – 800 nm)擁有高透光度之電極。近年來,透明導電氧化物被應用於許多光電元件之透明電極上,例如: 觸控面板、顯示器及太陽能電池等元件。為了得到高品質的透明電極,我們採用透明導電氧化物層/金屬/透明導電氧化物層(Transparent conducting Oxide/Metal/Transparent Conducting Oxide, TCO/M/TCO)多層結構的透明導電薄膜,其多層結構之優點為,其一為上下兩層透明導電氧化物層可以抑制中間金屬層之金屬光反射,進而提高多層薄膜之透光度,其二為中間金屬層可提供大量的電子於多層薄膜,所以可以提高多層薄膜之導電度,因此使用多層結構可有效的提高透明導電薄膜之光電特性。本研究主要為利用射頻磁控濺鍍機(Radio Frequency Magnetron Sputtering)沉積頂部與底部的氧化鋅摻雜鋁(Aluminum-doped ZnO, AZO)薄膜以及利用離子束(Ion Sputtering)/直流磁控濺鍍機(Direct Current Magnetron Sputtering)沉積金屬薄膜於康寧玻璃基板上。本研究之目的為找出擁有最佳光電特性之多層透明導電薄膜,並應用於電致變色元件。本研究之主要方向分為三部分,其研究方向依序如下:
第一部份,本階段為探討不同中間金屬層材料以及厚度對多層薄膜之材料結構及光電特性之影響。
第二部份,為了更進一步獲得更高透光度及導電度之多層透明導電薄膜。我們選用具有最佳厚度之中間金屬層及較佳光電特性之多層薄膜來進行快速熱退火處理(Rapid Thermal Annealing, RTA)。其快速熱退火處理之參數如下: 分別在真空、氮氣及氧氣三種氣氛中進行快速熱退火處理,其退火溫度控制為100、200、300、400°C,退火時間為3分鐘,退火加熱速度控制為10°C / sec。本階段為探討熱退火處理對多層薄膜之材料結構及光電特性之影響。
第三部份,將擁有最佳光電特性之多層透明導電薄膜應用於電致變色元件上。我們成功的實現以WO3/AZO/Au/AZO多層結構為基底的電致變色元件,該元件具有快速地響應時間(著色時間: 9.9秒 ; 去色時間: 4.7秒)、去/著色態有高對比度(在可見光波長為550 nm時,對比度約為80 %)、元件的穩定度、壽命度極高、具有記憶功能性以及在紅外線具有抑制的功能(> 50 %)。另外,該元件是一種新型的電致變色元件,具有以下兩種功能,分別在去色態的時候,可以當作低輻射(Low-E)玻璃使用;在著色態可以當作電致變色元件。 最後,綜合上述結果表明,該AZO/Au/AZO多層薄膜是相當適合應用於電致變色元件的高品質透明電極。
Transparent conductive films (TCF) is a kind of the transparent electrode with high conductivity (<10-3 Ω-cm) and high transmittance in the visible range (300-800 nm). In recent years, the transparent conductive oxide has been applied to transparent electrodes of many opto-electrical devices, such as touch panels, displays, and solar cells. In this study, in order to obtain the high quality transparent electrode, we use a transparent conducting oxide /metal/transparent conducting oxide (TCO/M/TCO) multilayer structure. Because the multilayer structure can effectively improve the opto-electrical properties of the transparent conductive film, the advantages of the multilayer structure are: (1) The top and bottom of the transparent conducting oxide layer can suppress the metal reflection in the visible light, and thus improve the optical transmittance of multilayer films; (2) The intermediate metal layer can provide a large number of electrons in the multilayer films, it can improve the conductivity of the multilayer films.
In this study, we investigated the structural and opto-electrical properties of aluminum-doped ZnO (AZO)/metal (5-20 nm)/aluminum-doped ZnO (AZO) multilayer films deposited on glass substrate using by RF magnetron sputtering (for top/bottom AZO films) and DC magnetron/ Ion sputtering (for Metal films). The purpose of this study was to find the multilayer transparent conductive films with the best opto-electrical properties and to apply them electrochromic devices. Therefore, this study is divided into three parts, the steps are as follows:
(1) In the first part, we discussed the material and the thickness of the intermediate metal layer on the structural and opto-electrical properties of AZO/metal/AZO multilayer films.
(2) The second part, in order to further improve the transmittance and the conductivity of the multilayer films. The AZO/metal/AZO multilayer films with best opto-electrical properties and intermediate metal layer thickness were subjected to rapid thermal annealing (RTA). The multilayer films were annealed in an atmosphere of vacuum, nitrogen and oxygen at temperatures from 100 to 400 °C in steps of 100 °C for 3 min to investigate the effects of annealing treatment on structural, electrical and optical properties of the multilayer films.
(3) In the third part, the multilayer transparent conductive film with the best opto-electrical properties is applied to the electrochromic device. The new WO3/AZO/Au/AZO multilayer films based electrochromic device possess high optical modulation (ΔT) of 80 % at 550 nm wavelength, rapid response time 9.9 s (for colored stat) and 4.7 s (for bleached state), long lifetime and IR-suppression (> 50%) after 1000 nm wavelength were successfully demonstrated. It means that the novel electrochromic device has two functions, which can be used as the low-E glass (for bleach state) and as the electrochromic device (for color state). Finally, these results indicate that the AZO/Au/AZO multilayer films are a good candidate for the high quality electrode scheme in electrochromic device applications.
[1] G. Golan, A. Axelevitch, B. Gorenstein and A. Peled, Novel type of indium oxide thin films sputtering for opto-electronic applications, Applied Surface Science, 253 (2007) 6608-6611.
[2] U. Betz, M. Kharrazi Olsson, J. Marthy, M. F. Escolá, and F. Atamny, Thin Film Engineering of Indium Tin Oxide: Large area flat panel displays application, Surface and Coatings Technology, 200 (2006) 5751-5759.
[3] J. L. Vossen, Transparent Conducting Films, Physics of Thin Films, 9 (1977) 1-64.
[4] Walter Water and Sheng-Yuan Chu, Physical and structure Properties of ZnO Sputtered Films, Materials Letters, 55 (2002) 67-72.
[5] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering , Vacuum, 59 (2000) 538-545.
[6] Yasuhiro Igasaki and Hiromi Saito, The Effects of Zinc Diffusion on The Electrical and Optical Properties of ZnO: Al Films Prepared by RF Reactive Sputtering, Thin Solid Films, 199 (1991) 223-230.
[7] M. S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, Low-loss ZnO Optical Waveguides for SAW-AO applications, IEEE Trans. Ultrasonics, 36 (1989) 442-445.
[8] H. W. Lehmann and R. Widmer, Properties and Properties of Reactively Co-sputtered Transparent Conducting Films, Thin Solid Films, 27 (1975) 359-368.
[9] E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopra, Electrical and Optical Properties of Tin Oxide Films Doped with F and (Sb+F), Journal of Applied Physics, 53 (1982) 1615-1621.
[10] M. Zach, C. Haglund, D. Chakarov, B. Kasemo, Nanoscience and nanotechnology for advanced energy systems, Current Opinion in Solid State and Materials Science, 10 (2006) 132-143.
[11] M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
[12] Dr Peter Harrop, Mr Raghu Das, Wireless Sensor Networks 2011-2021, IDTechEX, (2012).
[13] https://yearbook.enerdata.net/
[14] I. Schwendeman, R. Hickman, G. Sönmez, P. Schottland, K. Zong, D. M. Welsh, and J. R. Reynolds, Enhanced contrast dual electrochromic devices, Chemistry of Materials, 14 (2002) 3118-3122.
[15] Lin Zhou, Xiaohong Chen, Feng Zhu, XinXing Sun and Zhuo Sun, Improving temperature-stable AZO-Ag-AZO multilayer transparent electrodes using thin Al layer modification, Journal of Physics D Applied Physics, 45 (2012) 505103.
[16] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Dependence of film composition and thicknesses on optical and electrical properties of ITO-metal-ITO multilayers, Thin Solid Films, 326 (1998) 67-71.
[17] G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis, Development of multilayer transparent conductive coatings, Solid State Ionics, 136-137 (2000) 655-661.
[18] 李正中,薄膜光學與鍍膜技術,藝軒出版社,第三版 (2002)。
[19] D. M. Mattox, Partcle bombardment effects on thin-film deposition: A review, Journal of Vacuum Science and Technology A, 7 (1989) 1105-1114.
[20] D. S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapman and Hill, New Work, (1991) 92-100.
[21] T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Haneda and K. Wasa, Heteroepitaxial growth of YSZ films on Si (100) substrate by using new metallic mode of reactive sputtering, Vacuum, 51 (1998) 583-590.
[22] Krishna Seshan, Handbook of Thin Film Deposition Process and Technologies, Noyes Publications, United States (2002).
[23] J.D. Verhoeven, Fundamentals of Physical Metallurgy, Wiley, New York, (1975) 326.
[24] M. Harsdorff, Thin influence of charged point defects and contamination of substrate surface on nucleation, Thin Solid Films, 116 (1984) 55-74.
[25] J. Venables, G. D.T. Spiller and M. Hanbucken, Nucleation and growth of thin films, Reports on Progress in Physics, 47 (1984) 399.
[26] F. C. Frank, J. H. van der Merwe, One-Dimensional Dislocations. I. Static Theory, Proceedings of the Royal Society of London. Series, Mathematical and Physical Sciences A, 198 (1949) 205-216.
[27] J.A. Thornton, Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coating, Journal of Vacuum Science and Technology, 11 (1974) 666-670.
[28] J.L.G. Fierro, Metal Oxides: Chemistry and Applications. CRC Press, (2006) 182.
[29] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (2005) 041301.
[30] U. Rossler, Landolt-Bornstein New Series, Group III, Springer, Heidelberg, 17B, 22, 41B (1999).
[31] C.F. Klingshirn, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Series in Materials Science, (2010) 9-10.
[32] S. Baruah and J. Dutta, Hydrothermal growth of ZnO nanostructures, Science and Technology of Advanced Materials, 10 (2009) 013001.
[33] 汪建民,材料分析,中華材料科學學會發行 (2001) 122。
[34] P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, R. M. Perks, Basic materials physics of transparent conducting oxides, Dalton Transactions, 19 (2004) 2995-3002.
[35] H. Mizoguchi, P.M. Woodward, Electronic Structure Studies of Main Group Oxides Possessing Edge-Sharing Octahedra: Implications for the Design of Transparent Conducting Oxides, Chemistry of Materials, 16 (2004) 5233-5248.
[36] D. C. Look, J. W. Hemsky, J. R. Sizelove, Residual Native Shallow Donor in ZnO, Physical Review Letters, 82 (1999) 2552.
[37] Z. M. Jarze̦bski, International series of monographs in the science of the solid state, Oxford, New York, Pergamon Press, 4 (1973).
[38] C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, New York, 7th Edition, (1996).
[39] Robert M. Pasquarelli, David S. Ginley, Ryan O'Hayre, Solution processing of transparent conductors: from flask to film, Chemical Society Reviews, 40 (2011) 5406-5441.
[40] S. Calnan and A. N. Tiwari, High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films, 518 (2010) 1839-1849.
[41] B. S. Chun, H. C. Wu, M, The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films, Applied Physics Letters, 97 (2010) 082109.
[42] Y. Kashiwaba, K. Sugawara, K. Haga, H. Watanabe, B. P. Zhang and Y. Segawa, Characteristics of c-axis oriented large grain ZnO films prepared by low-pressure MO-CVD method, Thin Solid Films, 411 (2002) 87-90.
[43] G. G. Valle, P. Hammer, S. H. Pulcinelli and C. V. Santilli, Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating, Journal of the European Ceramic Society, 24 (2004) 1009-1013.
[44] D. R. Lide, Handbook of chemistry and physics: a ready-reference book of chemical and physical data, Boca Raton: CRC Press, 78th Edition, (1997).
[45] J. H. Yun, N. Duraisamy, M. M. D. Kumar, J.Kim, Optical and electrical properties of AZO/Ni/ITO transparent conductor, Materials Letters, 143 (2015) 215-218.
[46] M. M. D. Kumar,S. M. Baek, J. Kim, The influence of Ni layer and thickness of AZO layers on the optoelectronic properties of AZO/Ni/AZO tri-layer deposited at room temperature, Materials Letters, 137 (2014) 132-135.
[47] L.S. Wang, Y.Z. Chen, G.H. Yue, H.D. She, X.H. Luo, D.L. Peng, Study of ferromagnetic, transparent and conductive AZO/Fe/AZO composite films, Applied Surface Science, 255 (2008) 2545-2549.
[48] S. H. Wang, Y. J. Hsiao, T.H. Fang, Fabrication and Optoelectronic and Nanomechanical Properties of AZO/Mo/AZO Multilayer Thin Films, Science of Advanced Materials, 7 (2015) 1-6.
[49] M. Fahland, P. Karlsson, C. Charton, Low resistivity transparent electrodes for displays on polymer substrates, Thin Solid Films, 392 (2001) 334-337.
[50] Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, J. R. Lee, Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Films, 411 (2002) 12-16.
[51] H. K. Park, J. W. Kang, S. I. Nac, D. Y. Kim, H. K. Kim, Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Solar Energy Materials and Solar Cells, 93 (2009) 1994-2002.
[52] J. Pia, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte, F. Rubinelli, Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells, Thin Solid Films, 425 (2003) 185-192.
[53] K. Seal, M.A. Nelson, Z.C. Ying, D.A. Genov, A.K. Sarychev, V.M. Shalaev, Growth, morphology, and optical and electrical properties of semicontinuous metallic films, Physical Review B, 67 (2003) 035318.
[54] K.L. Chopra, Growth of Sputtered vs Evaporated Metal Films, Journal of Applied Physics, 37 (1966) 3405.
[55] C. Charton, M. Fahland, Growth of Ag films on PET deposited by magnetron sputtering, Vacuum 68 (2002) 65-73.
[56] R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Solar Energy Materials and Solar Cells, 94 (2010) 87-105.
[57] E. O. Inganas, Electroactive Polymers in Large Area Chromogenics, SPIE Institute Series, 4 (1990) 328.
[58] 林保章,三氧化鎢薄膜電極之製備及其電致色變性質之研究, 台灣大學化學工程所,碩士論文,(1998)。
[59] S. K. Deb, A Novel Electrophotographic System, Applied Optics, 8 (1969) 192-195.
[60] C. M. Lampert, Smart Switchable Glazing for Solar Energy and Daylight Control, Solar Energy Materials and Solar Cells, 58 (1998) 207-221.
[61] E. Salje, K. Viswanathan, Physical properties and phase transitions in WO3, Acta Crystallographica Section A, 31 (1975) 356-359.
[62] U. Muller, Inorganic Structural Chemistry, John Wiley, Chichester, (1993).
[63] K. Bange, Colouration of tungsten oxide films: A model for optically active coatings, Solar Energy Materials and Solar Cells, 58 (1999) 1-131.
[64] B. W. Faughnan, R. S. Crandall, P. M. Heyman, Electrochromism in WO3 Amorphous Films, RCA Review, 36 (1975) 177-197.
[65] S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascharenhas, A. W. Czanderna, and S. K. Deb, Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency, Applied Physics Letters, 75 (1999) 1541.
[66] M. Stolze, D. Gogova, and L.-K. Thomas, Analogy for the maximum obtainable colouration between electrochromic, gasochromic, and electrocolouration in DC-sputtered thin WO3−y films, Thin Solid Films, 476 (2005) 185-189.
[67] A. Subramanyam, A. Karuppasamy, and C. Suresh Kumar, Oxygen-Sputtered Tungsten Oxide Thin Films for Enhanced Electrochromic Properties, Electrochemical and Solid-State Letters, 9 (2006) H111-H114.
[68] P. Gerard, A. Deneuville, G. Hollinger, and T. M. Duc, Color in tungsten trioxide thin films, Journal of Applied Physics, 48 (1977) 4252.
[69] J. S. E. M. Svensson, C. G. Granquist, Electrochromic coatings for smart windows: Crystalline and amorphous WO3 films, Thin Solid Films, 126 (1985) 31-36.
[70] O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, Dependence of WO3 Electrochromic Absorption on Crystallinity, Journal of the Electrochemical Society, 124 (1977) 749-753.
[71] A. L. Larsson, B. E. Sernelius and G. A. Niklasson, Optical absorption of Li-intercalated polycrystalline tungsten oxide films: comparison to large polaron theory, Solid State Ionics, 165 (2003) 35-41.
[72] P. P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices, John Wiley and Sons, Ltd., (2009) 29.
[73] F. M Smits, Measurements of Sheet Resistivity with the Four-Point Probe,” Bell System Technical Journal, 37 (1958) 711-718.
[74] L. J. Guo and M. G. Kang, Nanostructured transparent metal electrodes for organic solar cells, SPIE Newsroom, (2009) 10-12.
[75] E. H. Hall, On a new Action of the Magnet on Electric Currents, American Journal of Mathematics, 2 (1879) 287-292.
[76] Y. Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Graduate Texts in Physics, Springer (2010).
[77] H. W. Wu, R. Y. Yang, C. M. Hsiung and C. H. Chu, Influence of Ag thickness of aluminum-doped ZnO/Ag/ aluminum-doped ZnO thin films, Thin Solid Films, 520 (2012) 7147-7152.
[78] D. R. Lide, Handbook of Chemistry and Physics, CRC Press, (2004). [79] B.R. Krishna, T.K. Subramanyam, B.S. Naidu, S. Uthanna, Effect of substrate temperature on the electrical and optical properties of dc reactive magnetron sputtered indium oxide films, Optical Materials, 15 (2000) 217-224.
[80] H.M. Lee, Y.J. Lee, I.S. Kim, M.S. Kang, S.B. Heo, Y.S. Kim, Daeil Kim, Annealing effect of ZnO/Au/ZnO transparent conductive films, Vacuum, 86 (2012) 1494-1498.
[81] H. Han, N. D. Theodore, T. L. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer, Journal of Applied Physics, 103 (2008) 013708.
[82] T. Dimopoulos, G.Z. Radnoczi, B. Pécz, H. Brückl, Characterization of ZnO:Al/Au/ZnO:Al trilayers for high performance transparent conducting electrodes, Thin Solid Films, 519 (2010) 1470-1474.
[83] Y. S. Kim, J. H. Park, D. H. Choi, H. S. Jang, J. H. Lee, H. J. Park, J. I. Choi, D. H. Ju, J. Y. Lee, D. Kim, ITO/Au/ITO multilayer thin films for transparent conducting electrode applications, Applied Surface Science, 254 (2007) 1524-1527.
[84] S. Lee, S. Bang, J. Park, S. Park, Y. Ko, H. Jeon, AZO/Au/AZO multilayer as a transparent conductive electrode, Status Solidi A, 209 (2012) 698-701.
[85] D. Kim, The influence of Au thickness on the structural, optical and electrical properties of ZnO/Au/ZnO multilayer films, Optics Communications, 285 (2012) 1212-1214.
[86] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, Thin Solid Films, 326 (1998) 72-77.
[87] K. C. Park, D. Y. Ma, K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films, 305 (1997) 201-209.
[88] G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, 47 (1976) 4086-4089.
[89] D. Kim, Influence of the Cs partial pressure on the optical and electrical properties of ITO films prepared by dc sputter type negative metal ion beam deposition, Optical Materials, 24 (2003) 471-476.
[90] D.R. Sahu, J.L. Huang, Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers, Applied Surface Science, 253 (2006) 915-918.
[91] X.T. Hao, L.W. Tan, K.S. Ong, F. Zhu, High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications, Journal of Crystal Growth, 287 (2006) 44-47.
[92] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, (1978) 102.
[91] B.R. Krishna, T.K. Subramanyam, B.S. Naidu, S. Uthanna, Effect of substrate temperature on the electrical and optical properties of dc reactive magnetron sputtered indium oxide films, Optical Materials, 15 (2000) 217-224.
[92] H. Han, N. D. Theodore, T. L. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer, Journal of Applied Physics, 103 (2008) 013708.
[93] R.T. Poole, The Colour of the Noble Metals, Phys. Educ. 18 (1983) 280-283.
[94] F.L. Battye, A. Goldman, L. Kasper, S. Hufner, Photoelectron spectra of the noble metals, Z. Phys. B27 (1977) 209-214.
[95] X. Liu, X. Cai, J. Qiao, J. Mao, N. Jiang, The design of ZnS/Ag/ZnS transparent conductive multilayer films, Thin Solid Films, 441 (2003) 200-206.
[96] K. Sivaramakrishnan and T. L. Alford, Metallic conductivity and the role of copper in ZnO/Cu/ZnO thin films for flexible electronics, Applied Physics Letters, 94 (2009) 052104.
[97] J. Hu, P. Liu, and L. Chen, Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au/SiO2, Applied Optics, 51 (2012) 1357-1360.
[98] A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan and F. Placido, The influence of rf power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering, Journal of Physics D: Applied Physics, 38 (2005) 266-271.
[99] Sangho Kima, Jinjoo Parkb, Sunbo Kima, Youngseok Lee, Shihyun Ahn, Free-carrier absorption and Burstein-Moss shift effect on quantum efficiency in heterojunction silicon solar cells, Vacuum, 108 (2014) 39-44.
[100] K. H. Yoon, W. J. Choi, D. H. Kang, Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate, Thin Solid Films, 372 (2000) 250-256.
[101] H.W. Wu, R.Y. Yang, C.M. Hsiung and C.H. Chu, Characterization of aluminum-doped zinc oxide thin films by RF magnetron sputtering at different substrate temperature and sputtering power, Journal of Materials Science: Materials in Electronics, 24 (2013) 166-171.
[102] L. Gong, J. G. Lu, and Z. Z. Ye, Conductive Ga doped ZnO/Cu/Ga doped ZnO thin films prepared by magnetron sputtering at room temperature for flexible electronics, Thin Solid Films, 519 (2011) 3870-3874.
[103] S. Song, T. Yang, M. Lv, Y. Li, Y. Xin, L. Jiang, Z. Wu, S. Han, Effect of Cu layer thickness on the structural, optical and electrical properties of AZO/Cu/AZO tri-layer films, Vacuum, 85 (2010) 39-44.
[104] M. I. Ionescu, F. Benseba, B. L. Luan, Study of optical and electrical properties of ZnO/Cu/ZnO multilayers deposited on flexible substrate, Thin Solid Films, 525 (2012) 162-166.
[105] Y.P. Wang, J.G. Lu, X. Bie, Z.Z. Ye, X. Li, D. Song, X.Y. Zhao, W.Y. Ye, Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature, Applied Surface Science, 257 (2011) 5966-5971.
[106] T.C. Lin, S.C. Chang, C.Fu Chiu, Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere, Materials Science and Engineering B, 129 (2006) 39-42.
[107] B. Rajesh Kumar, T. Subba Rao, Investigations on opto-electronical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films annealed at different temperatures, Applied Surface Science, 265 (2013) 169-175.
[108] P.T. Hsieh, H.S. Chin, P.K. Chang, C.M. Wan, Y.C. Chen, M.P. Houng, Effects of the annealing environment on green luminescence of ZnO thin films, Physica B, 405 (2010) 2526-2529.
[109] H.J. Cho, S.U. Lee, B. Hong, Y.D. Shin, J.Y. Ju, H.D. Kim, M. Park, W.S. Choi, The effect of annealing on Al-doped ZnO films deposited by RF magnetron sputtering method for transparent electrodes, Thin Solid Films, 518 (2010) 2941-2944.
[110] Z.N. Ng, K.Y. Chan, T. Tohsophon, Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique, Applied Surface Science, 258 (2012) 9604-9609.
[111] T.L. Tansley, D.F. Neely, Adsorption, desorption and conductivity of sputtered zinc oxide thin films, Thin Solid Films, 121 (1984) 95-107.
[112] K.C Park, D.Y Ma, K.H. Kim, The physical properties of Al doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films, 305 (1997) 201-209.
[113] L. Zhou, X. Chen, F. Zhu, X.X. Sun and Z. Sun, Improving temperature-stable AZO/Ag/AZO multilayer transparent electrodes using thin Al layer modification, Journal of Physics D: Applied Physics, 45 (2012) 505103.
[114] D.R. Sahu, J.L. Huang, The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere, Thin Solid Films, 516 (2007) 208-211.
[115] Y.C. Liang, X.S. Deng, H. Zhong, Structural and optoelectronic properties of transparent conductive c-axis-oriented ZnO based multilayer thin films with Ru interlayer, Ceramics International, 38 (2012) 2261-2267.
[116] M. Neghabi, A. Behjat, S.M.B. Ghorashi, S.M.A. Salehi, The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films, Thin Solid Films, 519 (2011) 5662-5666.
[117] T. Dimopoulos, G.Z. Radnoczi, Z.E. Horváth, H. Brückl, Increased thermal stability of Al-doped ZnO-based transparent conducting electrodes employing ultra-thin Au and Cu layers, Thin Solid Films, 520 (2012) 5222-5226.
[118] I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, A. Terrasi, Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, 520 (2012) 4432-4435.
[119] M. R. Johan, M. S. M. Suan, N. L. Hawari, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition, International Journal of Electrochemical Science, 6 (2011) 6094-6104.
[120] A. Hojabri, F. Hajakbari, N. Soltanpoor, Annealing temperature effect on the properties of untreated and treated copper films with oxygen plasma, Journal of Theoretical and Applied Physics, 8 (2014) 132.
[121] Z. Huda, and B. Ralph, Kinetics of grain growth in powder-formed in-792: a nickel-base superalloy, Materials Characterization, 25 (1990) 211-220.
[122] L. Zhou, X. Chen, F. Zhu, X. Sun and Z. Sun, Improving temperature-stable AZO–Ag–AZO multilayer transparent electrodes using thin Al layer modification, Journal of Physics D: Applied Physics, 45 (2012) 505103.
[123] S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications, Advanced Materials, 18 (2006) 763-766.
[124] S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi, D. K. Kim, Fast switchable electrochromic properties of tungsten oxide nanowire bundles, Applied Physics Letters, 90 (2007) 173126.
[125] D. R. Cairns, D. C. Paine, G.P. Crawford, The Effect of Thermal Shrinkage on ITO Coated PET for Flexible Display Applications, SID VI Digest, (2001) 654.
[126] B. T. Lee, T. H. Kim, S. H. Jeong, Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering, Journal of Physics D: Applied Physics, 39 (2006) 957.
[127] S. S. Kalagi, S. S. Mali, D. S. Dalavi, A. I. Inamdar, H. Im, Transmission attenuation and chromic contrast characterization of R.F. sputtered WO3 thin films for electrochromic device applications, Electrochim. Acta, 85 (2012) 501-508.
[128] J.M. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly and electrochromic properties of uniform crystalline WO3 nanorods, The Journal of Physical Chemistry C, 112 (2008) 14306-14312.
[129] Z. Jiao, X. W. Sun, J. Wang, L. Ke, and H. V. Demir, Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics, Journal of Physics D: Applied Physics, 43 (2010) 285501-1–285501-6.
[130] Y. M. Lu, C. P. Hu, The colored and bleached properties of tungsten oxide electrochromic films with different substrate conductivities, Journal of Alloys and Compounds, 449 (2008) 389-392.
[131] J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, Z.J. Zhao, J.P. Tu, Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers, Electrochimica Acta, 55 (2010) 6953-6958.
[132] T. Wang, X. Diao, P. Ding, Orthogonal optimization for room temperature magnetron sputtering of ZnO: Al films for all-solid electrochromic devices, Applied Surface Science, 257 (2011) 3748-3752.
[133] A. Subrahmanyam, A. Karuppasamy, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films, Solar Energy Materials and Solar Cells, 91 (2007) 266-274.
[134] J. Zhang, J.P. Tu, X.H. Xia, Y. Qiao, Y. Lu, An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte, Solar Energy Materials and Solar Cells, 93 (2009) 1840–1845.
[135] H. C. Chen, D. J. Jan, C. H. Chen, K. T. Huang, Bond and electrochromic properties of WO3 films deposited with horizontal DC, pulsed DC, and RF sputtering, Electrochimica Acta, 93 (2013) 307-313.
[136] S. C. Wang, K. Y. Liu, J. L. Huang, Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device, Thin Solid Films, 520 (2011) 1454-1459.
[137] Matthew B. Pinson and Martin Z. Bazant, Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction, Journal of the Electrochemical Society, 160 (2013) A243-A250.